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a b s t r a c t

Folds are spectacular geological structures that are seen in layered rock on many different scales. To mark
30 years of the Journal of Structural Geology, we review the information that can be gained from studies
of folds in theory, experiment and nature. We first review theoretical considerations and modeling, from
classical approaches to current developments. The subject is dominated by single-layer fold theory, with
the assumption of perfect layer-parallel shortening, but we also review multilayer fold theory and
modeling, and folding of layers that are oblique to principal stresses and strains. This work demonstrates
that viscosity ratio, degree of non-linearity of the flow law, anisotropy, and the thickness and spacing
distribution of layers of different competence are all important in determining the nature and strength of
the folding instability. Theory and modeling provide the basis for obtaining rheological information from
natural folds, through analysis of wavelength/thickness ratios of single layer folds, and fold shapes. They
also provide a basis for estimating the bulk strain from folded layers. Information about folding mech-
anisms can be obtained by analysis of cleavage and fabric patterns in folded rocks, and the history of
deformation can be revealed by understanding how asymmetry can develop in folds, by how folds
develop in shear zones, and how folds develop in more complex three-dimensional deformations.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Folds are spectacular structures in deformed rocks, affecting
single or multiple layers on all scales, and on a small-scale
commonly seen affecting veins, schistosities and foliations (Figs. 1
and 2). They have played an important part, historically, in under-
standing episodes of deformation in orogenic belts. To mark 30
years of the Journal of Structural Geology, we combine forces and
indulge our separate love of folds to review the information that
can be gained from studies of folds in theory, experiment and
nature.

It was probably Hall (1815) who first used the word folds in
connection with rock structures. He was describing the models he
had made from layered cloths confined between boards and
laterally compressed, to simulate folded rocks he had observed on
the Berwickshire coast of Britain. He wrote: “The consequence was
. the strata were constrained to assume folds, bent up and down,
which very much resemble the convoluted beds. exhibited in the
crags of Fast Castle”. Among the early studies of folds are the
outstanding contributions of Willis (1891) on mechanics and
udleston), susan.h.treagus@

All rights reserved.
terminology and Van Hise (1894) on geometry. Much of the work
on folds in the first half of the 20th century was concerned with
developing geometrical methods for representing folds. Details can
be found in the textbooks of Leith (1923), Nevin (1931), Hills (1963)
and de Sitter (1964). A review of work on the mechanics of folding
through the mid 1970s can be found in Johnson (1977: Chapter 1).

In this review, we concentrate on the information that folded
rocks and their analysis can provide: information on rheology,
strain and deformation history, locally or regionally. Much of this
information stems from developments in fold theory and modeling
over the course of the last 50 years, beginning with the work of Biot
(1961, 1965a, 1965b), who developed theories for single and
multilayer folding in viscoelastic and viscous media, with applica-
tions to rocks, Currie et al. (1962), who developed models of elastic
folding and structural lithic units that were related to folds in the
Appalachians, and Ramberg (1959, 1963, 1964, 1970), who made
significant contributions to the modern understanding of folding
mechanisms, based on theory and model experiments. These
studies together form the foundations of modern fold theory and
modeling, expanded below.

In their papers on buckling, Biot (1961, 1965a) and Ramberg
(1964, 1970, 1981) extended their analysis to include the influ-
ence of gravity. In this paper we do not consider gravitational
forces, which may become important for large folds, and are
certainly so for folds that affect the earth’s surface. In the last
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Fig. 1. Examples of small-scale buckle folds. (a) Quartz veins in slate, Trondheim, Norway; scale bar 20 cm. (b) Quartz veins in schist, Cap de Creus, Spain; coin 2 cm. (c) Mylonitized
pegmatite vein in mylonites, Cap de Creus, Spain, showing wavelength decreasing with thickness; scale bar 10 cm. (d). Single-layer buckling in thin white pegmatitic veins modified
by multilayer effects of banding in gneisses of the Maggia nappe, Ticino, Switzerland; coin 2.3 cm.

Fig. 2. (a) Multilayer folds in Moine schists, with wavelengths determined by competent white quartzo-feldspathic veins of different thickness (v) that have buckled largely
independently; Loch Monar, Scotland; scale bar 20 cm. (b) Multilayer folds in anisotropic gneiss, Maggia nappe, Ticino, Switzerland; hand lens 5 cm. (c) Multilayer folding in the
New Harbour Formation psammitic schists, Silver Bay, Anglesey, UK; lens cap 5 cm. (d) Multilayer buckle folds of chevron style and variable asymmetry in siltstone and slates,
Boscastle, Cornwall, England; scale bar 20 cm. The overall fold style is similar (Class 1C, Ramsay, 1967, p. 367), but the stiff siltstone layers have parallel shapes (Class 1B).

P.J. Hudleston, S.H. Treagus / Journal of Structural Geology 32 (2010) 2042e2071 2043



P.J. Hudleston, S.H. Treagus / Journal of Structural Geology 32 (2010) 2042e20712044
decade or so, work on large-scale buckle folding has focused on the
whole lithosphere (e.g. Burg and Podladchikov, 1999; Cloetingh
et al., 2002), at which scale gravitational forces are of great
importance.
Fig. 3. In thin-plate analysis, the normal stress, sx, in the layer can be considered the
sum of a uniform (membrane) stress, sx , and fiber stresses, ~sx , related to the pertur-
bation of the layer (after Schmalholz and Podladchikov, 2000).
2. Theoretical considerations and modeling

2.1. Single-layer fold theory

Single layer fold theory concerns the buckling of isolated layers
subjected to layer-parallel compression, developed for the case of
a stiff or competent viscous layer in a less stiff or less competent
matrix (Biot, 1961; Biot et al., 1961; Ramberg, 1961, 1963; Chapple,
1968; Fletcher, 1974, 1977; Smith, 1975, 1977, 1979; Johnson and
Fletcher, 1994) and for the corresponding cases of elastic and
viscoelastic layers and matrix (Biot, 1961, 1965a; Currie et al., 1962;
Johnson, 1977; Mühlhaus et al., 1994, 1998; Hunt et al., 1996, 1997;
Schmalholz and Podladchikov, 1999, 2000; Jeng and Huang, 2008).
Classical theory predicts that if the layer is given small sinusoidal
perturbations of different wavelengths, one such perturbation will
amplify at a greater rate than all others. The wavelength of this
perturbation is termed the dominant wavelength, ld. For Newtonian
viscous layer andmatrix in plane strain, with maximum shortening
parallel to the layer and ignoring gravity and inertial effects, ld
depends only on the ratio of viscosities of layer to matrix. The thin-
plate (see below) approximation for ld is:

ld
h

¼ 2p
�

mL
6mM

�1=3
; (1)

where h is layer thickness and mL and mM the viscosities of layer and
matrix (Biot, 1961; Ramberg, 1961). This approximation holds for
both welded and free-slip contacts between layer and matrix. It is
good for mL/mM � 100, but becomes increasingly inaccurate as mL/mM
is decreased and the assumptions of the thin plate formulation
become untenable. (Note in this regard that Eq. (1) gives a domi-
nant wavelength for the case when mL/mM ¼ 1, which is not physi-
cally meaningful).

Under suitable conditions, including sufficiently large strain
rates, the elastic properties of rocks may influence the folding
instability. The thin-plate expression for the dominant wavelength
of an elastic layer in an elastic matrix is identical in form to Eq. (1)
(e.g., Currie et al., 1962; Jeng and Huang, 2008).

ld
h

¼ 2p
�

EL
6EM

�1=3
; (2)

where EL and EM are the elastic moduli of layer and matrix. Elastic
behavior by itself is obviously inappropriate for rocks, in which
folds represent permanent inelastic deformation. If an elastic layer
is embedded in a viscous matrix, the dominant wavelength is
dependent on applied load (or alternatively rate of deformation). It
is given by:

ld
h

¼ p

 
EL

P
�
1� y2L

�
!1=2

; (3)

where nL is Poisson’s ratio and P is the layer-parallel stress in the
stiff layer (Biot, 1961; Turcotte and Schubert, 1982). Note that the
dominant wavelength in this case is independent of the viscosity of
the matrix. If the layer is viscoelastic (Maxwell rheology, equivalent
to a spring and a dashpot in series) and the matrix viscous,
Schmalholz and Podladchikov (1999) showed that whether the
folding is controlled largely by its viscous properties (with ld given
by Eq. (1)) or largely by its elastic properties (with ld given by Eq.
(3)) depends on the ratio of the viscous to elastic dominant
wavelengths. If the ratio, R ¼ ldv/lde < 1, ld is given approximately
by Eq. (1) and if R¼ ldv/lde > 1, ld is given approximately by Eq. (3).

A buckling instability is in fact one of a family of dynamic
instabilities that result from either compression or extension of an
isolated layer that is either more or less viscous than its matrix, as
shown by Smith (1975,1977). Folding is by far the strongest of these
four instabilities and the only one considered here. The other
important instability is that of pinch and swell or boudinage that
results from extension of a stiff layer in a less competent matrix,
and this instability is only significant if the material behavior is
non-linear, because for Newtonianmaterials the dynamic growth is
counteracted by the kinematic decay associated with the base flow.
However, if the base flow involves extension along the axes of the
boudins, it may be possible to produce boudinage in Newtonian
flow (James and Watkinson, 1994).

Thin-plate analysis takes into account only normal stresses in the
competent layer, and the stresses associated with folding consist of
deviatoric tension in the outer arcs and deviatoric compression in
the inner arcs (Fig. 3). Layer-parallel shear stress is ignored. Thick
plate analysis does not make this restrictive assumption about
stresses (Johnson and Fletcher, 1994, pp. 196e207), and thus
provides more accurate predictions of the dominant wavelength at
low viscosity contrast and for low-amplitude fold growth. Third
order analysis of the problem (Johnson and Fletcher, 1994, pp.
224e236) accounts for the deviation of the layer shape of the
growing fold from sinusoidal. Thick plate analysis does not lead
to an explicit expression for the dominant wavelength. In
viscous materials, whether thin-plate or thick-plate analysis is
used, the layer will shorten and thicken under the influence of the
compressive normal stress (Fig. 4), and treating this analytically
involves considering the stresses in the layer to consist of two parts,
a uniform stress that results in shortening of the layer with time
and a perturbation stress field that is the source of the buckling
instability (see Fig. 3 for the thin-plate case). At high viscosity
contrasts the amount of shortening that will occur before the folds
grow to finite amplitude is small, but at low viscosity contrasts
significant layer-parallel shortening will occur as the folds amplify.
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Fig. 4. Definition of terms used to described periodic folds at various stages of
development. (a) Initial state; (b) after fold nucleation and growth and towards the end
of wavelength selection; (c) after growth to large amplitude. If L z lp at stage (b), L in
(c) is a rough measure of lp at the strain shown in (b) (see text).
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Ramberg (1964) emphasized the implications of this for single
layers with different values of mL/mM deformed under the same
conditions of overall shortening e the layers will appear to have
undergone different degrees of folding. At very low viscosity
contrasts the kinematic amplification, due only to the geometric
change associated with homogeneous strain, masks the dynamic
amplification due to the buckling instability.

Sherwin and Chapple (1968) modified thin plate theory to take
into account the effect of layer-parallel shortening that accom-
panies low-amplitude fold growth. In this case, the wavelength of
the folds with the greatest cumulative amplification is a function of
the layer-parallel shortening. Johnson and Fletcher call this the
preferred wavelength, lp. The approximate (thin-plate) expression
for lp is:

lp
hðTÞ ¼ 2p

�
mL
6mM

T þ 1
2T2

�1=3
; (4)

where T ¼ S1/S2 ¼ S1
2, and S1 and S2 are the principal stretches

perpendicular and parallel to the layer respectively. From Biot
(1965a, p. 427), and Johnson and Pfaff (1989) it can be shown that:

lp
h

¼ ld
ho

S2: (5)

The analyses discussed above assume a form of linear viscous or
viscoelastic rheology. However, experiments on common rock-
forming minerals and rocks, and fabric analyses in naturally-
deformed rock, suggest that under certain conditions of ductile
deformation, rocks might be expected to follow non-linear flow
laws (e.g. Carter and Tsenn, 1987; Kirby and Kronenberg, 1987;
Rutter, 1993; Kohlstedt et al., 1995; Hirth et al., 2001). Fletcher
(1974) and Smith (1975, 1977) independently developed the
theory for folding of layers with non-linear rheology, in the case of
Fletcher specifically power-law, for which the single component
stress e strain rate relationship is of the form _e ¼ Bsn, where n is
the power-law exponent and B a constant. An approximate
expression for the dominant wavelength corresponding to the thin-
plate expression, Eq. (1), is (Fletcher, 1974):

ld
h

¼ 2p

 
m0L
6m0M

n1=2M
nL

!1=3

; (6)

where nL and nM are the power-law exponents and m0L and m0M the
viscosities under the base rate of flow (in response to the stress sxin
Fig. 3) for the layer andmatrix respectively. Note that for power-law
fluids it is not meaningful to talk about a single viscosity contrast
between two rock types because viscosity varies as function of
stress or strain rate, and thus viscosity ratio will vary as stress or
strain-rate vary (Treagus, 1993).

Another important rock property that affects the folding insta-
bility is anisotropy. As pointed out by Fletcher (1974), power-law
rheology and anisotropy of the competent layer, in which the
viscosity of the layer in shear parallel to the layer is less than the
viscosity in shortening or extension, have opposite effects on
the secondary flow associated with folding and thus on the buck-
ling instability. The stress-induced anisotropy of the secondary flow
associated with power-law rheology involves the layer becoming
weaker in compression than in shear, whereas the intrinsic
anisotropy of layered rocks involves the layer being weaker in shear
parallel to the layer than in compression. Anisotropy of this type in
the competent layer lessens the buckling instability, whereas
anisotropy in thematrix increases it, compared to the isotropic case
and if normal viscosities of layer and matrix are kept fixed (Kocher
et al., 2006).

In general, for viscous materials the rate of growth of a sinu-
soidal perturbation can be expressed by a function of the following
form (Fletcher, 1974):

dA
ds

¼ ½1þ qðkÞ�AðkÞ; (7)

where A is amplitude, q(k) is a growth factor, k ¼ 2ph=l, and s is
dimensionless time (s ¼ � _ext, where _ex is the base strain rate
corresponding to the stress sx, t is time and e2s ¼ T). This implies
an exponential increase in fold amplitude with time or with
shortening strain. Using e2s ¼ T and changing and separating
variables the expression for amplification becomes:

ln
A
Ao

¼
ZT
1

½1þ qðkÞ� 1
2T

dT ; (8)

where Ao is initial amplitude. The value of q(k) depends on the
rheological properties and implies mechanical instability if
greater than zero. A value of q ¼ 0 describes purely kinematic
amplification. For a given set of rheological parameters, q(k)
attains a maximum value for the dominant wavelength. Exact
first order expressions for q(k) have been derived for linear
rheology under conditions of bonded-contact and free-slip layer
interfaces by Johnson and Fletcher (1994, pp. 196e206) and for
bonded-contact power-law rheology (Fletcher, 1974; Johnson and
Fletcher, 1994, p. 383). Results for linear rheology, bonded
contacts and three values of mL/mM are shown in Fig. 5a, and
values of the dominant wavelength/thickness, ld/h, as a function
of viscosity contrast are shown in Fig. 5b, where the differences
between thin-plate and exact solutions with either bonded or
free-slip contacts can be compared. Thin-plate theory over-
estimates the growth rate and underestimates the value of ld/h
for a given viscosity contrast.

The variations of q(k) with l/h for a viscosity ratio of 50 and
for both linear and power-law behavior of the layer and isotropic
and anisotropic behavior of the matrix are shown in Fig. 6. The



a b

Fig. 5. (a) Growth factor, q(k) (Johnson and Fletcher, 1994, Eq. 5.2.12b) as a function of l/h for linear viscous layer and matrix (bonded contacts) and three different viscosity
contrasts. (b) Dominant wavelength/thickness, ld/h, as a function of viscosity ratio for an isolated single layer, for the thin-plate (Biot) approximation and for exact thick-plate first
order solutions with either bonded or free-slip contacts and linear viscosity (Eq. (1), and from Johnson and Fletcher, 1994, Eqs. 5.2.16b, 5.2.17).
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growth rate curves in this figure were obtained from Fletcher
(1974, Eq. 8):

qðkÞ ¼ 2nL
�
1� R0

�n�
�
1� Q2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nL � 1

p h
ð1þ QÞ2eaLk

� ð1� QÞ2e�aLk
i.

2sinðbLkÞ
o�1

; (9)

where R0 ¼ m0nM=m0nL , R00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0nMm0sM

q
=m0nL , Q ¼ ffiffiffiffiffi

nL
p

R00, aL ¼ ffiffiffiffiffiffiffiffiffiffiffi
1=nL

p
;

and bL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=nL

p
. Fletcher (1974) pointed out, following Biot

(1965a, p. 211), that for single-layer folding, an anisotropic
viscous matrix behaves like an isotropic viscous half-space with
effective viscosity m ¼ ffiffiffiffiffiffiffiffiffiffi

mnms
p

. This allows Eq. (9) to be used to
incorporate the effect of an anisotropic matrix. It is clear from Fig. 6
that power-law behavior of the layer both enhances the growth rate
and decreases the dominant wavelength compared to linear
behavior, whereas anisotropy of the matrix increases both the
growth rate and the dominant wavelength. A combination of
power-law layer and anisotropic matrix greatly enhances growth
rates and modestly affects the dominant wavelength. The degree to
which the growth rate and dominant wavelength are affected
Fig. 6. Effect of power-law rheology of layer and anisotropy of matrix on dynamic
growth rates and dominant wavelength (given by l/h for the peak values of these
curves) of single layer buckle folds. nL is the power-law exponent of the layer and
dM ¼ m0Mn /m0Ms (with m0Mn and/m0Ms being the normal and shear viscosities of the matrix) is
the anisotropy factor of the matrix (see Kocher et al., 2006). In all cases the ratio of
normal viscosity of the layer to the normal viscosity of the matrix, m0Ln/m0Mn ¼ 50.
obviously depends on the power-law exponent and the degree of
anisotropy. An analytical solution for an anisotropic layer in an
isotropic matrix has been derived by Fletcher (personal commu-
nication), and this and numerical simulations (Kocher et al., 2006,
Fig. 2c), show that the growth rate for an anisotropic layer is sup-
pressed compared to the linear case, for fixed mnM=mnL .

Using the appropriate expression for q(k), Eq. (8) can be inte-
grated numerically over the path k(s) ¼ koe2s ¼ koT to find the
cumulative amplification, A/Ao, of folds with initial wave number,
ko. By creating spectra of A/Ao as a function of k the value
kp ¼ 2ph=lpthat shows the maximum cumulative amplification
can be found. An example of amplification spectra for increasing
amounts of shortening is shown in Fig. 7 for Newtonian layer and
matrix. An exact expression for kp or lp/h was derived by Sherwin
and Chapple (1968) for the thin-plate linear viscous case (Eq. (4)).
2.2. Finite amplitude single-layer fold theory

First-order buckling theory predicts an exponential increase in
amplitude with time or shortening (Eqs. (7) or (8)) as folding
initiates and is strictly applicable only for infinitesimal amplitudes.
Extending theoretical analysis beyond first order (Fletcher, 1979;
Johnson and Pfaff, 1989; Johnson and Fletcher, 1994, pp.
224e236), shows that higher waveforms spontaneously develop
that serve tomodify fold shape and limit the growth rate of the first
waveform. Cruikshank and Johnson (1993) developed a method of
matching boundary conditions along irregular interfaces that
allows fold development to be predicted accurately to high
amplitudes. Schmalholz and Podladchikov (2000) developed
a simple modification of the thin-plate theory for single layers that
effectively tracks fold amplitude, without specifying the exact fold
shape. This takes into account the fact that for fold growth to
continue exponentially, according to the linear theory, a stretching
of the competent layer would have to occur, and it is resistance to
this stretching that slows fold growth. They assumed that the layer-
parallel stress (membrane stress, s in Fig. 3) in the competent layer
remains constant around the layer as the fold grows to finite
amplitude but decreases with time in response to the resistance of
the layer to stretching. The membrane stress is related to layer-
parallel (arclength) strain rate, which is therefore also constant
around the layer. Both membrane stress and strain rate will
decrease as the fold grows, and analytical expressions for these
were obtained by Schmalholz and Podladchikov (2000), expressing
membrane stress as a function of initial stress and arc strain rate as



Fig. 7. Amplification spectra for mL/mM ¼ 50 (Newtonian, isotropic) after increasing
amounts of shortening strain, T ¼ S1/S2, during low-amplitude fold growth. The black
dot shows the dominant wavelength/thickness, ld/h, and the dash-dotted line tracks
the change in preferred wavelength/thickness, lp/h, with shortening. The dashed lines
track wavelengths that have been amplified to half the maximum value. They show the
increased selectivity of amplification with shortening.
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a function of initial or background strain rate. A comparison of first
order (small amplitude) theoretical predictions of fold growth with
the predictions of Schmalholz and Podladchikov’s (2000) finite
amplitude theory is made in Fig. 8. The finite amplitude theory
agrees very well with numerical simulations of buckling (see
Schmalholz and Podladchikov, 2000, Fig. 6), which do not depend
on thin-plate assumptions about stress in the competent layer. The
amount of strain accumulated in the stage during which the
exponential curves track fold growth depends on the amplitude of
the initial perturbation in the layer e the smaller the initial
perturbation, the greater the amount of strain. In general it is quite
limited.

The departure of the finite-amplitude growth curve from the
infinitesimal-amplitude growth curve is reflected in a transition
from layer shortening accompanying exponential growth to fold
growth with little change in layer (arc) length. This is shown in
Fig. 8. Growth of fold amplitude/wavelength, A/l, for a single layer with mL/mM ¼ 50
and with initial sinusoidal perturbation of the dominant wavelength (ld/h ¼ 12.75)
and initial amplitude equal to 0.02 of layer thickness, according to thin-plate theory
(Biot, 1961), thick-plate theory (Fletcher, 1974) and finite amplitude theory of
Schmalholz and Podladchikov (2000). The predictions of the finite amplitude theory
are closely matched by 2D numerical simulations (Schmalholz and Podladchikov,
2000).
Fig. 9. Schmalholz and Podladchikov (2000) proposed the term
crossover amplitude for the amplitude at which this transition
occurs. They also proposed the term nucleation amplitude, which is
the amplitude at which the dynamic rate of fold growth is equal to
the kinematic rate. Both nucleation amplitude and crossover
amplitude have precise definitions, and depend only on the growth
rate factor, q(k), (Schmalholz and Podladchikov, 2000, Eq. (16);
Schmalholz and Podladchikov, 2001, Eq. (8)).
2.3. Single-layer fold modeling: analog and numerical

Considerable experimental work has been done to investigate
the nature of folding instabilities in single stiff layers embedded in a
less stiff matrix and subjected to layer-parallel shortening, using a
variety of analog materials for layer and matrix. The existence
of a characteristic or quasi-characteristic wavelength in physical
model experiments, and good correspondence with theoretical
predictions, have been found experimentally for elastic layers in an
elastic matrix (Biot et al., 1961; Currie et al., 1962), elastic layers in
viscous matrix (Biot et al., 1961) and viscous layers in viscous
matrix, both for Newtonian (Biot et al., 1961; Hudleston, 1973a) and
non-Newtonian (Neurath and Smith, 1982; Mancktelow and
Abbassi, 1992) cases.

Since digital computers became widely available in the 1960s,
numerical methods have been applied with considerable success to
study the development of folds to high amplitude. Chapple (1968)
used a finite difference approach for this purpose, predicting fold
shape in a thin linearly viscous layer of constant length embedded
in a viscous matrix. Dieterich (1969) and Dieterich and Carter
(1969) used finite element models (FEM) to analyze fold shape,
strain distribution and stress history in folds grown to high
amplitudes in viscous materials, free from the assumptions of thin-
plate theory. Subsequent numerical studies of single-layer folds
have included the effects of non-linear rheology (Parrish, 1973; Lan
and Hudleston, 1991), anisotropy (Lan and Hudleston, 1996; Kocher
et al., 2006), and viscoelastic behavior (Zhang et al., 1996;
Mancktelow, 1999; Schmalholz et al., 2001).

Numericalmodels provide a goodmeansof examining the effects
of varying rheological properties and strain rate in a controlled way
in viscous and viscoelastic media and also provide an excellent way
of testing the dependence of finite fold shape on the initial layer
configuration, and in particular on the form of the initial layer
irregularities. It is worth noting that essentially identical results
Fig. 9. Change in relative arclength as a function of strain during folding of a single
Newtonian layer in Newtonian matrix with an initial sinusoidal (dominant) waveform
and initial amplitude of 0.02 of layer thickness, according to the finite amplitude
theory of Schmalholz and Podladchikov (2000), for three values of viscosity ratio, mL/mM.
The line for “no folding” represents uniform shortening of the layer without folding. The
black dots indicate the crossover strains, given by stretch Sc (Schmalholz and
Podladchikov, 2000), that approximately limit the stage of folding described by the
linear theory.



P.J. Hudleston, S.H. Treagus / Journal of Structural Geology 32 (2010) 2042e20712048
have been obtained for a wide range of conditions using different
numerical techniques. One apparent conflict between results using
two different techniques studying buckling in viscoelastic media
(see Zhang et al., 1996, who used a finite difference code; and
Mancktelow, 1999, who used a finite element code) was due to the
fact that different strain rates had been used in the two sets of
experiments. When the strain rates were the same, the results of
using the two techniques were basically identical (Zhang et al.,
2000; Jeng et al., 2002).

Numerical results are consistent with theoretically predicted
initial growth rates, which depend on wavelength/thickness of
harmonic components, either individually or combined in an
imposed initial amplitude spectrum. The results are most clear for
linearly viscous layer and matrix. If a low-amplitude single wave-
form is initially present, this will amplify at the theoretically pre-
dicted rate, whether or not the waveform is that of the dominant
wavelength (Mancktelow, 1999). With initial random perturba-
tions, quasi-periodic folds develop with average wavelength close
to the predicted dominant wavelength (Fig. 10, Fletcher and
Sherwin, 1978; Mancktelow, 1999; Schmalholz and Podladchikov,
1999, Fig. 3), provided that the amplitudes of the initial irregular-
ities are sufficiently small. The geometry of the final folds does,
however, reflect the particular distribution of initial irregularities
(e.g. Fig. 10, Mancktelow, 1999, Fig. 17). In non-linear viscous
materials, growth rates are enhanced but the final fold form bears
a similar relationship to the initial irregularities as for Newtonian
materials (e.g. Mancktelow, 1999, Fig. 18).

In nature, folds sometimes occur in packets, and various authors
have investigated the growth of folds from an initial isolated
perturbation, typically of bell shape (Biot, 1961; Cobbold, 1975,
1977; Abbassi and Mancktelow, 1990) to study how such packets
might develop. The phenomenon is referred to as serial folding, and
it is observed that folds develop sequentially outwards from the
location of the initial perturbation. The wavelength of these folds is
close to that predicted by theory for the dominant wavelength (Biot
et al., 1961). With enough strain, a packet of high amplitude
localized folds may develop (Mancktelow, 1999, Fig. 12). Some
authors consider non-linear effects to be important in under-
standing serial folding (Hunt et al., 1996, 1997, 2006).

If the layers have both viscous and elastic properties, the situation
is more complicated than when considering viscous properties
alone. The behavior of the system then depends not just on
viscosity contrast, as for viscous layers, but also on the imposed
layer-parallel stress or strain rate. Perhaps the Maxwell model is
the most realistic and yet simple constitutive model that has both
viscous and elastic properties and that is a good analog for rocks.
a

b

c

Fig. 10. Examples of single-layer folds produced in numerical models with interfaces
possessing random initial irregularities. (a) Linear viscous materials with mL/mM ¼ 50
and with initial layer length 15 times the dominant wavelength, and maximum
amplitude of irregularities about 0.02 of initial layer thickness, at about 30% shortening
(Schmalholz, 2006, Fig. 5a). (b) Viscoelastic layer and matrix, but with fold growth
dominated by the viscous properties, with mL/mM ¼ 50, and maximum amplitude of
initial irregularities 0.05 of initial layer thickness at 55% shortening (Mancktelow, 1999,
Fig. 17). (c) The same as (b) but with maximum amplitude of initial irregularities 0.005
of layer thickness (Mancktelow, 1999, Fig. 17).
Schmalholz and Podladchikov (1999) confirmed with numerical
models their theoretical prediction that the wavelength of the folds
developed in a viscoelastic layer in a viscous matrix depends on the
ratio, R¼ ldv/lde, of viscous dominant wavelength (Eq. (1)) to elastic
dominant wavelength (Eq. (3)): viscous control when R < 1 and
elastic control when R > 1, as noted earlier (2.1).

In general, buckling in viscoelastic media involves consideration
of relaxation times of both layer and host, and the situation may be
complicated (Mühlhaus et al., 1998; Jeng and Huang, 2008). Jeng
et al. (2002, 2008) demonstrated that a waveform of attenuated
amplitude may develop in viscoelastic media at a stress level below
the threshold stress for buckling in an elastic layer and with pre-
dicted and observed wavelengths greater than the dominant
wavelength. Numerical models using viscoelastic layer in a visco-
elasticmatrix have been run by Zhang et al. (2000), restricting study
to cases inwhich the viscous and elastic dominant wavelengths are
the same. As for a viscoelastic layer in viscous matrix case, there is
a transition from viscous properties controlling buckling to elastic
properties controlling buckling with increasing strain rate, for
a given set of viscous and elastic parameters (Zhang et al., 2000). In
one example studied byMancktelow (1999) and Zhang et al. (2000)
the initial layer configuration was in the form of a sinusoidal
perturbation with wavelength less than that of the theoretical
dominant wavelength for the cases mL/mM¼ EL/EM¼ 20, 50,100, and
200. At low strain rates the input waveform amplified at a rate
consistent with viscous theory, but without the development of the
dominant wavelength. At high strain rates, elastic effects became
dominant and folds at close to the dominantwavelength developed,
replacing the imposed initial waveform, although this change in
wavelength does not occur if the initial waveform is perfectly
sinusoidal and symmetry is maintained at the model boundaries e
in other words in such a case the folds that develop are metastable
(Zhang et al., 2000). Slow strain rates led to localized growth of folds
from a single isolated initial perturbation, as expected for a viscous
layer andmatrix, whereas fast strain rates led to the development of
periodic folds along the layer, with little difference in amplitude or
wavelength between the fold sited on the initial perturbation and
the rest of the folds in the train (Fig. 11).

The extent to which elastic properties are significant in folding
under natural conditions is unclear. For small folds in competent
layers in quartz or calcite veins in slates or schists or quartz-feldspar
veins in granitic rocks, which are common in the internal parts of
orogenic belts, deformed at typical rates of 10�14 s�1, it seems that
viscous properties will control fold growth. The value of the strain
rate employed in themodels of Mancktelow (1999) and Zhang et al.
(1996, 2000) that resulted in elastic control of buckling was
10�10 s�1. Such a high value may occur locally, such as in narrow
shear zones, but it is unlikely to be met in most parts of orogenic
beltswheremostnatural folds develop. It shouldbe added, however,
that high values of mL/mM also favour an elastic response to buckling
a

b

Fig. 11. Numerical models of single layer folds in viscoelastic media developed from an
isolated perturbation to show the effect of strain rate on fold development. Initial
configuration and rheological properties the same for the two models. EL ¼ 3.5e11,
Poisson’s ratio ¼ 0.25, mL ¼ 2e21, Deborah number ¼ m _e/G ¼ 0.00007 for top case and
0.7 for lower case for both layer and matrix (Zhang et al., 2000, Fig. 7).
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(Schmalholz and Podladchikov (1999), Fig. 2b), and conditions that
would most likely lead to an elastic response to buckling would
therefore be a combination of fast strain rate and high mL/mM.

In numerical models where the competent layer is strongly non-
linear or plastic, the tendency is for fold growth to be localized and
the lateral propagation of folds away from the initial perturbation is
reduced (Zhang et al., 1996, Fig. 6; Mancktelow, 1999, Fig. 11).
A fuller discussion of analog and numerical modeling of folds with
non-linear and power-law rheology, and the rheological effects
on fold growth and geometry, will be addressed in subsequent
sections.

Anisotropy is an important property of many rocks and,
considering the common occurrence of folds in quartz/calcite/
feldspar veins in schists, anisotropy in the matrix is probably much
more important than anisotropy in the stiff layer in influencing the
buckling instability. A characteristic of folding in this situation is
that the folds do not die out quickly away from the stiff layer, as
a

c

Fig. 12. Numerical models of folding of a single Newtonian layer embedded in a matrix of va
noise) and the same ratio of normal viscosity of layer to normal viscosity of matrix, mL/mM ¼
power law (nM ¼ 3) viscous matrix; (c) anisotropic (dM ¼ 6) linear viscous matrix; (d) anis
they do in an isotropic matrix, but rather propagate well into the
matrix (Kocher et al., 2006, 2008). Numerical models show that in
a Newtonian matrix the folds maintain a uniform fold form of
chevron style, whereas in a power-law matrix the fold form
changes and the style is a mixture of kink and chevron (Fig. 12).

2.4. Multilayer folding: theory and modeling

Theoretical treatments of multilayer folding follow generally
a similar approach to those for single layers, except that in this case
multiple interfaces and layers of several different viscosities are
involved (Biot, 1961; Currie et al., 1962; Ramberg, 1964, 1970;
Johnson and Fletcher, 1994). Many different configurations have
been considered, but it is useful to consider several particular types,
which are illustrated in Fig. 13 (with some natural examples shown
in Fig. 2). If several stiff layers of a given viscosity and constant
thickness are separated by layers of low viscosity, the response of
b

d

rious properties (Kocher et al., 2006). The same initial random layer irregularities (red
50, in all cases. All shortened by 40%. (a) Linear isotropic viscous matrix; (b) isotropic
otropic (dM ¼ 6) power-law (nL ¼ 3) viscous matrix.
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Fig. 13. Idealized configurations of multilayer buckling. (a) Package behaves as an effectively anisotropic single layer. (b) Buckling instability in individual layers coupled to those of
neighbors (“true multilayer” of Schmid and Podladchikov, 2006). (c) Stiff layers of the same composition folding independently of neighbors. (d) Fold wavelength of individual layers
determined by local viscosity contrast, m4 > m2 > m3 > m1 > mM (after Ramberg, 1964). (e) Internal buckling of laminated medium, equivalent to an anisotropic layer sandwiched
between two stiff layers (after Biot, 1964). (f) Internal buckling of laminated medium equivalent to an anisotropic self-confined medium (after Biot, 1965c).
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the system depends on the number and spacing of the stiff layers as
well as the viscosity contrast between the stiff layers and the
matrix. If a multilayer of thickness H, embedded in an infinite
matrix of viscosity mM and consisting of alternating stiffer and softer
layers of viscosity m1 and m2 occupying fractions a1 and a2 of the
total thickness, it can be considered an effectively anisotropic single
layer, with normal and shear viscosities, mn and ms given by:

mn ¼ a1m1 þ a2m2; ms ¼ m1m2
a1m2 þ a2m1

; (10)

If mM/ms << 0.2(ms/mn)1/2, a relationship for the dominant
wavelength identical to Eq. (1) can be derived (Biot, 1965b), if h is
replaced by H and mL by mn in equation (1).

ld
H

¼ 2p
�

mn
6mM

�1=3

: (11)

It corresponds to the situation shown in Fig. 13a. Biot called this
similar folding of the first kind, although this is not a similar (Class 2)
fold according to the standard geometric classification (Ramsay,
1967, p. 367), but rather a parallel fold (Class 1B).

If mM/ms >> 0.2(ms/mn)1/2, the bending resistance of the indi-
vidual stiff layers in the multilayer becomes significant, and the
response of the multilayer corresponds to the situation in Fig. 13b.
The dominant wavelength is given by:

ld
h1

¼ 2p
�
NmL
6mM

�1=3
; (12)

where h1 is the thickness of the stiff layers within the multilayer
and N the number of stiff layers. Biot called this similar folding of the
second kind, and in this case the overall geometry of the folds is
similar (Class 2), achieved by alternating Class 1B and Class 3
geometries of the stiff and soft layers.

The above expressions for dominant wavelength are derived
from thin plate analysis (Biot, 1961, 1965b). If shear stresses
between layers are significant or if there are intervening soft
layers, thin-plate theory is inadequate. Johnson and Fletcher
(1994) carried out a thick plate analysis of multilayer folding
for a system consisting of layers of arbitrary thicknesses and
viscosities that allows accurate calculation of growth rates and
dominant wavelengths by an iterative process. Depending on the
layer configuration, this may result in growth rate spectra with
more than one maximum, which is the situation investigated to
find conditions that may result in parasitic folding (Ramberg,
1963, 1970; Johnson and Fletcher, 1994, chapter 6; Frehner and
Schmalholz, 2006; Treagus and Fletcher, 2009) discussed
below. For any particular configuration, change of the preferred
wavelength with shortening can be found as for single layers (see
Eqs. (7), (8)), and is expressed for multilayers, as for single layers,
by an expression equivalent to Eq. (5) (Johnson and Fletcher,
1994, p. 312).

As spacing between stiff (competent) layers is increased, in
a simple package with stiff layers of equal thickness and spacing,
there is a transition from effective single layer behavior (Fig. 13a)
to what Schmid and Podladchikov (2006) call “true multilayer”
behavior (Fig. 13b) and then a transition to single layer behavior,
in which the layers fold independently (Fig. 13c, and a natural
example in Fig. 2a). As the spacing is progressively increased,
growth rates increase over what is predicted by the Biot theory
for a single layer, reaching a maximum when the alternating stiff
and soft layers have equal thickness (Fig. 14), which corresponds
to true multilayer behavior (Fig. 13b). Growth rates also increase
as the number of layers is increased, but tend towards a ‘satura-
tion’ value that depends on viscosity ratio (Schmid and
Podladchikov, 2006, Fig. 5). As argued by Ramberg (1960, 1961),
the key to determining whether the package behaves as a true
multilayer or as independent single layers is the spacing in
relation to the dominant wavelength. When spacing is greater
than the single layer dominant wavelength, ld, a distance that
Ramberg called the zone of contact strain, the individual layers in
the package behave independently. Schmid and Podladchikov
(2006) argue in a reciprocal sense that when the spacing is less
than 1/ld the package behaves as an effective single layer. These
distances correlate fairly well with the ends of the central plateau
in Fig. 14a.



a b

Fig. 14. Theoretical dominant wavelengths (a) and corresponding growth rates (b) for folds in individual layers in a multilayer package consisting of N stiff layers of viscosity mL,
thickness h and spacing s separated by layers of viscosity, mM, with the whole package embedded in two half spaces of viscosity, mM$mL/mM ¼ 250. Growth rates and wavelengths are
normalized against the Biot thin-plate values (from Schmid and Podladchikov, 2006, Fig. 3).
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Treagus and Fletcher (2009) examined scales of folding in
multilayers, specifically asking why small-scale folds initiate in
multilayers, when it is known from theory and modeling (Biot,
1961, 1965a; Ramberg, 1963, 1964; Johnson and Fletcher, 1994;
Mühlhaus et al., 2002; Schmid and Podladchikov, 2006), that
a multilayer comprising numerous stiff layers will fold with
a stronger amplification than a single stiff layer in the same host
and that buckling instability increases with the number of stiff
layers. Using analytical mechanical models, Treagus and Fletcher
(2009) investigate the conditions where small folds of one or two
layers might initiate with a strong enough instability to become
small-scale ‘minor’ folds preserved around the larger-scale folds.
They find that small folds in one layer are likely to outgrow larger
multilayered folds (a) if the thin layer is the stiffest of all the layers,
or (b) if the multilayer is narrowly or stiffly confined. Fig. 15 illus-
trates the process, and the progressive change from initially
Fig. 15. Model results of the development of asymmetry in minor folds around
a larger-scale multilayer fold, where the central thin layer is twice the stiffness of the
outer, thicker, stiff layers. The viscosity ratios of dark layers to matrix are 20 and 40.
From Treagus and Fletcher (2009).
symmetric to asymmetric minor folds around a major fold with
progressive deformation. Frehner and Schmalholz (2006) provide
another model whereby minor folds develop and grow more
quickly thanmajor folds; here, the importantmechanism is that the
initial layer irregularities play a more significant part in fold initi-
ation and growth, the thinner the layer.

The configuration shown in Fig. 13e inwhich folding develops in
a multilayer sandwiched between two very stiff and unfolded
layers was termed internal buckling by Biot (1964, 1965a,b,c). A
comparable pattern of folding may develop in an infinite multi-
layer, which Biot (1965c) has termed self confinement (Fig.13f, with
a natural example shown in Fig. 2c). In these cases the wavelength
is given by the empirical relation (Biot, 1965c):

ld ¼ 1:90
�
1þ 3:63

m1a2
m2m

�1=6 ffiffiffiffiffiffiffiffiffi
h1H

p
; (13)

where the multilayer consists of N alternating layers of viscosity m1
and m2 and thicknesses h1 and h2, with h1 þ h2 ¼ 2h and a2 ¼ h2/2h
and m1 > m2. The total thickness of the package or wavelength in the
y direction in the case of self confinement is, H¼Nh. If the soft layer
is vanishingly thin, a2 ¼ 0 and

ld ¼ 1:90
ffiffiffiffiffiffiffiffiffi
h1H

p
: (14)

This holds only if there is sufficient lubrication retained at the
interfaces of the layers. This expression also holds approximately
for a multilayer with stiff and soft layers of equal thickness when
m1/m2 < 1000 (see Biot, 1964, Fig. 4).

An analysis of folding has also been carried out for homoge-
neous anisotropic materials, in which discrete layers do not exist.
This corresponds to the conditions required for folding in foliated
rock. Cobbold (1976a, 1976b) showed that symmetric sinusoidal
similar folds of low amplitude in linear viscous anisotropic media
will grow into high amplitude chevron folds if the anisotropy is
large, and Casey and Huggenberger (1985) extended this approach
to treat asymmetric folds in a non-coaxial strain history. Fletcher
(2005) analyzed the instability and development of cylindrical
structures in a power-law anisotropic medium, equivalent to
a foliated rock. He demonstrated the existence of band-like insta-
bilities whose orientation depends on the ratio of foliation-parallel
extension to foliation-parallel shear, but there is no characteristic l/
h as there are no layers to give a definition to thickness. Fletcher’s
results (Fletcher, 2005, Fig. 5) include structures that are equivalent
to the self confinement of Biot (1965a).
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Internal buckling in multilayered and/or anisotropic media, and
the spectrum of folding styles from chevron folds to kink bands,
have been demonstrated in analog models by Ghosh (1968),
Cobbold et al. (1971) and Latham (1979). Latham (1985a,b) inves-
tigated relationships across the spectrum of folding, kinking and
faulting, in anisotropic non-linear materials in theory and labora-
tory experiments. Examples of different configurations of multi-
layer and resulting differences in fold geometry are shown in Fig. 2.

2.5. Oblique-layer folding, non-plane strain and non-coaxial
deformation

Nearly all the theory and modeling of folds, reviewed above,
concerns plane strain with layers parallel to the maximum short-
ening direction and maximum extension perpendicular to the
layering. Thewaveforms considered are cylindrical, developing into
folds with axes parallel to the direction of no strain. It has been
shown both theoretically (Fletcher, 1991, 1995) and experimentally,
in single layers (Grujic and Mancktelow, 1997) and multilayers
(Watkinson, 1975), that folds also develop in plane strain with
maximum extension of the base flow parallel to the layer (rather
than perpendicular to the layer) and with the fold axes parallel to
the direction of maximum extension, In this case the growth rates
are reduced, increasing the viscosity ratio required to produce
significant folding and, for a given viscosity ratio, increasing the
amount of layer-parallel shortening that precedes large-amplitude
fold growth.

It has been shown (Treagus, 1973) that the same dominant
wavelength of a cylindrical waveform as given by Eq. (1) would
arise for Newtonian materials under conditions of plane strain but
with the layer oblique to the principal compression (but parallel to
the direction of intermediate stress and strain). To first order,
the initial low-amplitude buckles are symmetric (Treagus, 1973;
R.K. Davies and R.C. Fletcher, personal communication, 2009), but
become asymmetric during progressive folding, as shown in finite-
element models (Anthony and Wickham, 1978). The same princi-
ples have been shown to apply to folds that develop in non-coaxial
deformation, such as in transpression (James andWatkinson,1994),
provided there is a component of shortening along the layer. Folds
in these situations grow perpendicular to the instantaneous
maximum shortening direction in the layer.

If the layer has initial sinusoidal waveforms in both x and y
directions in the plane of the layer, with wavelengths lx and ly,
and with shortening in both x and y directions, Fletcher (1991)
shows that a cylindrical waveform (i.e. ly ¼ N) with axis
perpendicular to the maximum shortening rate of the basic flow
grows most rapidly, although the growth rate is not markedly
greater than that when lx/ly > 0, that is when the folds are non-
cylindrical with increasing aspect ratio as lx/ly increases. This is
true for most values of _ex= _ey, but when _ex ¼ _ey (that is equal
shortening rate in both x and y directions) the instability disap-
pears and all fold forms grow at an equal rate. If initial random
perturbations in both x and y are amplified, the tendency of the
resulting fold form to cylindricity increases with amplification,
and is stronger for a power-law layer than a Newtonian layer
(Fletcher, 1995). In the power-law case, for a cylindrical pertur-
bation with axis parallel to y, the stress exponent n in the
expression for the growth rate must be replaced by an apparent
stress exponent, n*, where:

n* ¼
4n
�
1þ xþ x2

�
4
�
1þ xþ x2

�
þ 3ðn� 1Þx2

: (15)

where x is the ratio of the in-plane deformation rates of the basic-
state flow, _ey= _ex.
Kaus and Schmalholz (2006) and Schmid et al. (2008) investi-
gate numerically the development of folds to finite amplitude in
a three-dimensional strain field, with different rates of shortening
in x and y directions in a competent layer with random initial
irregularities in x and y. These studies confirm the analytical finding
of Fletcher (1991, 1995) that a waveform with axis (y direction)
perpendicular to the maximum shortening rate (x direction) grows
most rapidly, regardless of the value of the shortening rate in the
perpendicular direction and that there is no preferred wavelength
in this perpendicular direction. Even so, folds tend to develop with
a characteristic aspect ratio, lx/ly, which depends systematically on
the ratio of strain rates in the x and y directions, with aspect ratio, or
cylindricity, increasing as strain rate in the y direction changes from
negative to positive. Schmid et al. (2008) note that the initial
exponential growth rates predicted by theory give way to slower
growth rates, controlled by layer length, as occurs in two dimen-
sions (Schmalholz and Podladchikov, 2000) and as modified for
three dimensions by Kaus and Schmalholz (2006).

Experiments show that the folds that form under simple shear
are, at least for small amplitudes, symmetric (Ghosh, 1966; Manz
and Wickham, 1978; Viola and Mancktelow, 2005), as for the
inclined layers above. Growth to finite amplitudes, both in terms
of growth rate and orientation of the fold axes with respect to the
far-field principal strain axes, is complicated by the non-coaxial
nature of the deformation (Flinn, 1962; Ghosh, 1966; Treagus and
Treagus, 1981). The situation is further complicated for non-
Newtonian materials, as the case analyzed exactly by Fletcher
(1995) indicates, since the individual stress and strain rate
components are related through the second invariant of devia-
toric stress, which depends on all three principal stresses. If the
principal stress in the third dimension (y say, parallel to the fold
axis) dominates the second strain rate invariant, then the
invariant will not change much in response to variations of stress
component in the xy plane that control fold development. The
degree of non-linearity of flow associated with folding and hence
growth rates of folds will be diminished. In the situation
described by Eq. (15), if the power-law exponent is 3 and the
extension in y is equal to the shortening in x, the effective stress
exponent, n*, becomes 1.2, which is only weakly non-linear. This
effect will not be large in cases for which the fold axis is parallel
to the intermediate bulk strain and thus to a direction of small
deviatoric stress.

2.6. Folding of oblique layers in general three dimensional strain
fields

Some cases of folds developing in a three-dimensional strain
field have been considered in the previous section. If the layering is
oblique to all three far-field principal stresses or strain rates, the
directions of maximum shortening rate in the competent layer
varies continuously with time and the base strain rate on which
a buckling instability would be superimposed is therefore also
changing. This is true for a bulk coaxial strain history, and true but
further complicated for a bulk non-coaxial strain history. Flinn
(1962) considered how the finite strain and potential positions of
fold hinges vary in layers oblique to the principal strain directions
in a bulk coaxial strain field of various strain symmetries. Addi-
tional features of folding in 3D will be discussed in 6.4.

3. Information from wavelength/thickness ratios of single-
layer folds

Fold theory and modeling, reviewed in Section 2.1e2.6, provide
the basis for analysis and interpretation of natural folds and their
wavelengths, leading to information about the rheological
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properties of rocks. Equations, such as (1), (4), (5) and (6), define
dominant or preferred wavelength-thickness ratios for single-layer
folds under different rheological and strain conditions. For low-
amplitude folding, these equations can be applied to folding of
layers that are not parallel to maximum compression, and to
deformations other than pure shear, such as simple shear and
transpression, with a caveat for non-linear behavior discussed in
Section 2.5.
3.1. Wavelength selection

The irregularities in natural layer interfaces may be considered
as the sum of the components of a harmonic series. In linear theory
the growth rates of folds of different wavelength are linearly
independent, and there will be competition among the various
harmonic components. It is assumed that the folds that emerge are
those of the wavelength with the fastest growth rate, that is the
dominant wavelength or, in the case in which layer-parallel short-
ening is significant, those with the wavelength that has the greatest
cumulative amplification, that is the preferred wavelength. Because,
for viscous materials, all harmonic components are amplified, the
final waveform will reflect the superposition of the amplification
spectrum on the amplitude spectrum of the initial irregularities
(Fletcher and Sherwin, 1978) and thus not be truly periodic unless
the initial amplitude spectrum is periodic.

The process of wavelength selection, in which a particular
wavelength spectrum emerges and becomes locked in, with hinges
fixed, must have ceased by the time the crossover amplitude of
Schmalholz and Podladchikov (2000), discussed in Section 2.2, is
attained. Schmalholz (2006) finds the limb dip at which the
crossover amplitude is reached is about 17�, which is in general
agreement with earlier studies that noted that most shortening of
the layer ceases when folds attain limb dips of 15e20� (Sherwin
and Chapple, 1968; Hudleston, 1973a). Schmalholz (2006) shows
that if amplitudes are scaled to the crossover amplitude, all plots for
the change in amplitude with strain fall on essentially the same
curve (Fig. 16). An additional stage of folding, beyond the point
where the crossover amplitude is exceeded, can be identified when
Fig. 16. Scaled amplification curve (Schmalholz, 2006, Fig. 3), plotting limb dip or
amplitude/wavelength against shortening. The black line is calculated for qo ¼ 15
(corresponding to a viscosity contrast of about 50) and Ao/lo ¼ 3e�3 (corresponding to
a limb dip at the inflexion point of about 1�). The fold shapes are numerically simulated
single-layer folds for a viscosity contrast of 50. The crossover stretch, Sc, is given by
Schmalholz (2006, Eq. (8)).
the growth rate decreases to zero, or in fact becomes slightly
negative (Fig. 16). During this stage the growth is essentially kine-
matic, although this is only approximately so because the arclength
of the fold is essentially constant, whereas in true kinematic
behavior the local change in arclength will depend on position
around the fold e shortening in the hinge and extension in the
limbs if the limb dips are greater than 45�.

Natural and experimentally produced folds show a range in
values of wavelength/thickness or arclength/thickness. If fold trains
are divided up into segments bounded by hinges and/or inflexion
points, the distance between adjacent hinges is a measure of half
wavelength, or the distance between inflexion point and hinge
a measure of a quarter wavelength (Fig. 17a). Using such a measure,
Schmalholz (2006) shows that the growth of each individual fold in
a quasi-periodic fold train developed from a layer with random
initial perturbations follows the normalized amplification curve.
Based on the observation that little change in arclength occurs for
folds with limb dips >15e20�, it has been suggested that the
arclength of mature folds provides a good measure of wavelength
at the time that wavelength selection ceases (Fig. 4, Hudleston,
1973b, 1986; Fletcher and Sherwin, 1978). Frequency distributions
of wavelength/thickness for natural folds (Fig. 17b) are similar in
form to amplification spectra, as pointed out by Sherwin and
Chapple (1968), leading to the suggestion that themean value of L/h
for a natural fold population, L=h, may be a good measure of the
wavelength/thickness of the folds that have received maximum
amplification, lp/h. This assumption has been used in estimating
viscosity contrast in natural folds (Sherwin and Chapple, 1968;
Hudleston, 1973b; Hudleston and Holst, 1984). A test of this
assumptionwas made by Fletcher and Sherwin (1978) who showed
empirically that this relationship holds provided the initial irreg-
ularities in the layer correspond to a spectrum of white roughness,
which is arguably a reasonable approximation to many natural
surfaces. If, on the other hand, the harmonic components in the
initial layer have constant amplitude, L=h underestimates lp/h, by
an amount that can be determined and that depends on the
dispersion of the distribution. In addition, Fletcher and Sherwin
showed that the dispersion (standard deviation/mean) of the
frequency distribution of L/h is related to the relative bandwidth of
the amplitude spectrum of the harmonics present in the fold shape.
The relative bandwidth can then be used to estimate the maximum
amplification the folds have undergone.

3.2. Field data and inferences

Data on arclength/thickness, L/h, measured in the way illus-
trated in Fig. 17a, are shown for a single population of folds in
Fig. 17b and for published populations of folds in Table 1. Data of
this type have been the subject of recent discussion (Treagus and
Hudleston, 2009; and Schmid et al., 2010). Values of L/h in Table 1
range from 2e30, with means from 3.7 to 14.5 for a variety of
compositions of both layer and matrix. If the mean value of L/h is
taken as the dominant wavelength/thickness, ld/h, and the
viscosity is assumed to be Newtonian, these values imply a range of
viscosity ratios from 2 to 75 applying thin-plate theory and
somewhat smaller values applying thick-plate theory. As Sherwin
and Chapple (1968) and subsequent experiments and numerical
models have shown, these values are so low in most of these
examples that significant layer-parallel shortening would have
occurred before the amplification could have been sufficient to
bring the folds to the stage at which the wavelengths became
locked in, that is when the folds attained limb dips of about 15�.
Indeed, for the lowest values of L/h and at the lowest apparent
viscosity ratios the buckling instability would have beenmasked by
kinematic amplification.
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Fig. 17. (a) Local measures of fold amplitude, A, thickness, h, wavelength, l, and arclength, L, for quasi-periodic folds as typically found in nature. These were the measurements used
to produce the histogram in (b) for folds in calcite veins and limestone beds in slates east of Golden, British Columbia (after Hudleston, 1986). M indicates the mean.
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If the mean value of L/h is taken as the preferred wavelength/
thickness, lp/h, as is appropriate for an initial distribution of
irregularities in the form of white roughness (Fletcher and Sherwin,
1978), to attain an appropriate degree of amplification, in the range
10e100 (Sherwin and Chapple, 1968; Fletcher, 1974; Hudleston and
Holst, 1984; Schmid et al., 2010), implies large amounts of short-
ening if Newtonian viscosity is assumed. All the studies (except
Holst, 1987) for which strain data are available in Table 1 indicate
limited amounts of shortening, the maximum being T ¼ 1.5 (or
shortening of the layer of about 20%), but with likely values being
much less than this. The required amounts of shortening are
significantly reduced if power-law behavior is assumed, which
leads to higher amplification rates at smaller values of ld/h and lp/h
(as indicated by Fig. 6).

Because of the lack of good knowledge of the initial form and
amplitude of initial layer irregularities, the limited information
available on the early layer-parallel shortening of folded layers, and
the possibility of rheological behavior not properly accounted for in
the theoretical models used in the analysis, it is not possible to
make precise estimates of viscosity contrasts and power-law
exponents from the kind of data presented in Table 1. However,
useful information can be obtained from analysis of natural fold
populations. As an example, using the data of Hudleston and Holst
Table 1
Arclength/thickness data for single-layer folds.

Mean L/h Range Number of folds Strain in profile plane, T Sti

5.5 2e14 473 qu
4.5 2e13 142 qu
5.2 582 qu
6.8 9 qu
5.1 83 qu
4.0 12 silt
5.7 17 qu
3.7 1.5e8 157 qu
6.5 29 1.0e1.5 cal
7.0 2e16 233 cal
9.4 e 3 1.07e1.27 lim
a5.5 e4e13 22 qu
b8.0 e4e22 52 c. 1.15e1.35 qu
c8.5 e5e29 59 c. 1.15e1.35 qu
d14.5 e10e25 22 c. 1.06e1.20 qu
9.2 35 pe
6.2 1.5e17.5 343 2.8e4 qu
7.8 4.8e11.3 4 qu
12 cal
6.9 qu
5.9 qu

a These values are modes, not means, and for a subset of the data that includes only fold
total fold population than the mean of the subset.

b Same as above, for a subset with limb dips of 40e55� .
c Same as above, for a subset with limb dips of 15e30� .
d Same as above, for a subset with limb dips of 50e60� .
e These exclude folds outside indicated ranges of limb dips.
(1984), and Fletcher’s thick plate theory, if we take the mean
L/h ¼ 6.5 to be Lp/h and the amplification required to lock in this
wavelength as 20, assuming a power-law exponent n ¼ 1 for layer
and matrix (i.e. Newtonian) implies a viscosity ratio of 17 and an
initial layer-parallel shortening of about 35%. The viscosity ratio is
reasonable, but the measured shortening is probably less than 5%
and certainly less than 20%. Increasing the amplification worsens
the problem and reducing it to 5 still requires excessive shortening
(Hudleston and Holst, 1984). If we take a power-law exponent n¼ 3
for layer and matrix, with the same amplification, it implies
a viscosity ratio of about 17 and a shortening of 18%, which is within
the range of estimates of measured strain. Applying different
analytical solutions to natural single-layer folds, Schmalholz and
Mancktelow (2008) estimated the viscosity ratio to lie in the
range 20e70 and the power-law exponent of the layer to lie
between 1.8 and 5.

A tentative conclusion from the above, and also from the
discussion of Schmid et al. (2010), is that the measured single-
layers folds in the rocks shown in Table 1, more closely approximate
to power-law rheology than to Newtonian or viscoelastic rheology.
However, it should be pointed out that these data sets of fold
wavelengths mostly concern folded veins of quartz, calcite or
pegmatite, on the scale of mm to cm. There is very little evidence on
ff Layer Matrix Source

artz veins phyllite Sherwin and Chapple (1968)
artz veins sandy Sherwin and Chapple (1968)
artz veins slate Sherwin and Chapple (1968)
artzite slate Sherwin and Chapple (1968)
artz veins slate Sherwin and Chapple (1968)
stone slate Sherwin and Chapple (1968)
artzite phyllite Sherwin and Chapple (1968)
artzo-feldspathic veins pelitic schist Hudleston (1973b)
cite veins slate Hudleston and Holst (1984)
cite veins slate Hudleston (1986)
estone shale Fletcher (1974)
artz veins mafic schist Shimamoto and Hara (1976)
artz veins psammitic schist Shimamoto and Hara (1976)
artz veins psammitic schist Shimamoto and Hara (1976)
artz veins pelitic schist Shimamoto and Hara (1976)
gmatite granite Ramsay and Huber (1987)
artz layers slate Holst (1987)
artz veins calcarenite Johnson and Fletcher (1994)
c-silicate layer calcite marble Schmid et al. (2010)
artz-feldspar pegmatite calcite marble Schmid et al. (2010)
artz-feldspar pegmatite felsic gneiss Schmid et al. (2010)

s with limb dips of 75e90� . The mode of this subset will be closer to the mean of the
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b

c

Fig. 18. Numerical models of single-layer folds in a power-law stiff layer embedded in
a Newtonian matrix, with base viscosity contrast mL/mM ¼ 100, developed from an
identical starting sinusoidal shape with Lo/ho ¼ 12 and Ao/ho ¼ 0.1. Three cases shown
for nL ¼ 1, 3 and 10, all at 50% bulk shortening. Also shown are the sharpness
parameter, Ki, and schematically the strain in the inner and outer arcs of the fold,
separated by a dashed line representing the finite neutral surface. The inset shows how
curvature index is defined for a fold segment between hinge and inflexion point (see
also Hudleston and Lan, 1994). K is curvature. The value of Ki for a sine function with
the same limb dip (about 63�) for these folds is 0.86.
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a larger scale, or for a wider range of metasedimentary rock of
siliciclastic type, in part because true single-layer folds are
uncommon in stratigraphic sequences, especially in the first stage
of deformation. Multilayer folding is most commonly seen, and
here the wavelength-thickness relationships are harder to analyze.
We can find no convincing evidence, to date, to indicate that a wide
range of common rocks, such as interbedded quartzites, psammites,
and pelites, have folded as power-law multilayers. Indeed, it has
been argued from other structures such as cleavage refraction and
conglomerate deformation that suggest quite small viscosity
contrasts in rocks (Treagus, 1999; Treagus and Treagus, 2002; Czeck
et al., 2009), that under these conditions of deformation, the rocks
might be considered approximately Newtonian.

It should be possible to identify buckle folds that develop in
single layers within an anisotropic matrix by the propagation of
folds away from the layer well into the matrix, as shown in the
numerical models of Kocher et al. (2006) (Fig. 12). Getting infor-
mation on viscosity contrast will be more difficult than for single
layers in an isotropic matrix because yet another parameter, the
anisotropy factor, d, is introduced.

Despite the uncertainties discussed above, it should be possible
for some populations of folds, and using information discussed
below in sections 4 and 5, in addition to wavelength/thickness data,
to definewithmore precision the parameter space inwhich natural
folds lie. For multilayer folds, the eigenvalue/eigenvector method of
Johnson and Fletcher (1994) offers the possibility of modeling
specific layer configurations to match natural examples, although
again the number of parameters to consider makes this a challenge.

4. Information from fold shapes

Fold shapes in rocks are highly variable, especially in multilayers
(e.g. the illustrations in Weiss, 1972; Price and Cosgrove, 1990,
chapters. 12, 13; Hudleston and Lan, 1993; Fig. 2). This reflects
differences in the mechanical response due to differences in layer
thickness, viscosity, degree of anisotropy, deformation intensity
and deformation path, as well as the influence of initial layer
irregularities. Many methods have been proposed for character-
izing fold shape, on the basis of thickness variations (e.g. Ramsay,
1967, p. 360; Lisle, 1997), dip isogons (Ramsay, 1967, p. 363;
Hudleston, 1973c), relationships among selected fold parameters e
including amplitude, wavelength, interlimb angle, hinge curvature
(e.g. Twiss, 1988) e and by utilizing various mathematical func-
tions, including harmonic functions (e.g. Stabler, 1968; Hudleston,
1973c), power functions (Bastida et al., 1999), conic sections
(Bastida et al., 2005), and Bezier curves (Srivastava and Lisle, 2004).
We do not attempt to review all these here, but refer readers to the
review by Bastida et al. (2005).

4.1. Single layers

Themost regular and reproducible shapes are found in folds that
approach periodic form with a single wavelength, both in nature
(Fig. 1a,b) and in analog or numerical models (Fig. 10). By contrast,
when different wavelengths of comparable amplitude are repre-
sented in finite amplitude folds e which is most likely to occur
when the initial irregularities are large and the selectivity of the
folding poorethe shapes are less regular (e.g. the right hand side of
Fig. 10). Periodic buckle folds are initiated with close to sinusoidal
form and these grow to become more rounded in the hinge than
sinusoidal, unless the layer rheology is strongly non-linear
(Chapple, 1968), strongly anisotropic (Lan and Hudleston, 1996),
strain softens (Neurath and Smith, 1982), or fracturing occurs
(Tentler, 2001) in the hinge, in which case the fold shape can
become quite angular. The change in shape with fold growth can be
quantified by employing harmonic analysis (Hudleston, 1973c),
power functions (Bastida et al., 1999) or other means (Bastida et al.,
2005). The departure from sinusoidal shape is predicted by third
order buckling theory (Johnson and Fletcher, 1994) and is clearly
seen in analog and numerical models (e.g., the succession of fold
shapes in Fig. 16; Hudleston, 1973a).

Schmalholz and Podladchikov (2000) found that the first two
terms of the Taylor series that can be employed to define the
arclength of a sine function, strictly applicable only for small values
of A/l, match the arclengths of numerically produced single layer
folds up to limb dips of about 50�. The shape of the folds, as distinct
from arclength, also starts to deviate significantly from sinusoidal
at about 50� limb dip. Also, as amplitude increases, fold shape
increasingly becomes sensitive to non-linearity in the flow law. As
the power-law exponent of the stiff layer increases, folds tend to be
sharper hinged and longer limbed, a change associated with
deformation tending to become localized in the hinge region. This
can be noted by eye if folds of similar arclength/thickness ratio are
compared (Fig. 18) and quantified if some appropriate measure of
shape is used. Numerical models by Hudleston and Lan (1994)
showed, by varying lo/ho, mL/mM, nL and the shape of the initial
layer perturbation, that the main factor controlling sharpness of
fold hinges is nL. They employed a curvature index, Ki (see Fig. 18,
inset), that varies between 0 for a fold represented by a circular arc,
1 for a chevron fold, and 0.75 for a sine function with limb dip of
45�. The biggest shape difference among folds in layers with



Fig. 20. Sharpness parameter, Ki, as a function of limb dip at fixed arclength/thickness
ratio, L/h z 12, for numerical (solid lines) and natural and analog (symbols) folds. Data
from Gairola and Kern (1984) are for experimentally-produced folds in limestone.
Otherwise as in Fig. 19. From Lan and Hudleston (1995a).
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different power-law exponents is for wavelengths greater than
about 10 and at limb dips of 40e70 (Fig. 18). If the shapes of folds at
a given limb dip are compared, hinge sharpness, as measured by Ki,
increases with L/h with little dependence on nL, until values of
about L/h z 10 are attained (Fig. 19). For values of L/h greater than
about 10, hinge sharpness changes little with increase in L/h, but
there is a clear increase in sharpness as nL is increased. An alterative
plot of hinge sharpness at a given value of L/h (with L/h > 10) gives
similar results and shows that hinge sharpness increases only
slowly with limb dip (Fig. 20). This dependence of hinge sharpness
on non-linearity of flow behavior in the stiff layer is expected and
consistent with Chapple’s (1968) theoretical results of folding
a viscous-plastic beam in which plastic failure occurs in the hinge.

In principle, hinge sharpness can be used to gain some infor-
mation about rheological properties from natural folds (Hudleston
and Lan, 1993). Data for a set of minor folds in siltstone layers in
shale from the Appalachians are included in the plots in Figs. 19
and 20. The data cluster above the line representing nL ¼ 3, with
many points above the line for nL ¼ 10. This suggests highly non-
linear rheological behavior, although, as discussed below, other
factors can also lead to sharp-hinged folds. It is clear from
a

b

Fig. 19. Sharpness parameter, Ki, as a function of arclength/thickness, L/h, at fixed limb
dip (55�) for numerical (small crosses joined by solid lines) and natural and analog
(symbols) folds: (a) at a limb dip of 55�; (b) at a limb dip of 70� . Selected data for
analog models are from Hudleston (1973a,b,c) and Abbassi and Mancktelow (1999);
also data for Cruikshank and Johnson’s (1993) numerical model. Solid line data are
interpolated from results of numerical models with Lo/ho values of 6e30, nL ¼ 1, 3, 10
and mL/mM ¼ 100. Appalachian data are for folds in siltstones in shales. From Lan and
Hudleston (1995a).
numerical simulations that random irregularities in the initial
layer lead to fold trains with considerable variation in the shapes
of individual folds (Fig. 10, Schmalholz and Podladchikov, 2001,
Fig. 8, 11; Schmalholz, 2006, Fig. 5; Mancktelow, 2001, Fig. 7).
Schmalholz (2006), however, shows that individual folds of
different amplitude and somewhat different shape in a fold train
follow almost identical scaled amplification curves. This demon-
stration and the results of Hudleston and Lan (1994) support the
proposition that the folds in a fold train that have single well-
defined hinges but vary in amplitude and L/h should have values of
relative hinge curvature that reflect the stage of fold growth and
the degree of non-linearity in the flow law. A limitation of using
relative curvature to identify non-linear rheological behavior is
that a value of L/h ¼ 10 lies towards the upper end of the range of
mean values reported for studied natural fold trains (see Table 1).
The folds used in shape analysis, however, do not have to be ones
corresponding to the dominant (or preferred) wavelength and
many natural fold populations, even those with low mean values
of L/h, contain folds with L/h � 10.

Another factor influencing the sharpness of folds is anisotropy.
Fig. 21 compares fold shapes in single layers inwhich both layer and
matrix are anisotropic, with different degrees of anisotropy, d. It
should be possible to identify situations in which anisotropy has
influenced folding by the fabric (layer-parallel cleavage or schis-
tosity) in the rocks and by the development of layer-parallel shear
strain in the limbs of the fold; such strain beingminimal in isotropic
layers. This can be seen by comparing the deflection of layer normal
markers in Fig. 22a and b. Effective layer anisotropy can also be
achieved by alternating stiff and soft isotropic layers within an
isolated layer package that may behave as a composite single layer
during buckling (Fig. 22c). Sharp-hinged folds of similar shape
(measured by curvature index, Ki) and formed in three different
ways are compared in Fig. 22. This serves to demonstrate that layer
shape alone is not sufficient to distinguish these situations; it
should be considered in combination with internal strain distri-
bution and fabric pattern.

It seems unlikely that the effects of elasticity will be manifest in
most natural small folds (see Section 2.6), and there is conflicting
information on how elastic versus viscous properties affects the
regularity of fold trains. In numerical models of Schmalholz and
Podladchikov (2001, Fig. 11), there is much greater variation in
shape and strain associated with individual folds in layers in which
elastic properties influence folding than in purely viscous layers. By
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Fig. 21. Numerical models of single-layer buckle folds to show the effect on fold shape
of increasing anisotropy, as measured by d ¼ normal viscosity/shear viscosity. In all
cases Lo/ho ¼ 12, Ao/ho ¼ 0.1, nL ¼ 1, mL/mM ¼ 100 and bulk shortening ¼ 40%. The value
of the curvature index, Ki, is shown beside each fold. (a) dL ¼ dM ¼ 1 (isotropic layer and
matrix), (b,c) dL ¼ dM ¼ 20 and 50 (anisotropic layer and matrix). After Lan and
Hudleston (1996).
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Fig. 22. Numerical models of single layer (a,b) or effective single layer (c) buckle folds
of similar values of L/h and showing similar degrees of angularity (sharp hinges and
straight limbs) as measured by shape index, Ki, produced by different combinations of
rheological conditions. (a) In a highly non-linear isotropic stiff layer with dL ¼ 1,
nL ¼ 10; (b) in a strongly anisotropic layer with dL ¼ 15, nL ¼ 1; (c) in a composite layer
consisting of three isotropic stiff layers and two soft layers, with the soft layers the
same as the matrix. In all three cases Lo/ho ¼ 12, Ao/ho ¼ 0.1, mL/mM ¼ 100 and
shortening ¼ 40%. In (c) the effective anisotropy of the package, deff ¼ 24, is based on
Biot’s theory (Biot, 1965a, p. 432e433.). The matrix is Newtonian and isotropic in each
case (i.e. nM ¼ 1, dM ¼ 1). (Based on Fig. 6 in Lan and Hudleston, 1996). The value of
curvature index, Ki, is shown beside each fold.
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contrast, in models of Zhang et al. (2000), there is more variation in
fold shape in layers controlled by viscous properties than in layers
in which folds are controlled by the elastic properties. Differences
in matrix rheology and choice of elastic and viscous dominant
wavelengths likely explain these results.

The shape of buckled layers in 3D e in part the degree of
cylindricity of the folds - may contain information about the
rheology of single layer folds. Fletcher (1995) showed that the
selectivity of buckling for harmonic components with large aspect
ratio in x and y directions in the plane of the layer (with longest
dimension perpendicular to the shortening direction) in plane
strain depends on the power-law exponent, nL, such that folds of
greater cylindricity will develop from a layer with random pertur-
bations in both x and y directions in the layer interface for highly
non-linear rheology (very large value of nL, equivalent to plastic
behavior) than for Newtonian rheology (Fig. 23). Viscosity contrast
also has an effect, with high contrast enhancing cylindricity, but
only for non-linear rheology.

Information about folding mechanisms by which the strain in
the competent layer is accommodated can be found by applying the
techniques of Bobillo-Ares et al. (2004). Fold shapes can be
matched by trial and error application of their FoldModeler
program (Fig. 24), if information on cleavage orientation around the
fold is available and the assumption is made that cleavage reflects
the XYplane of the strain ellipsoid (with X� Y� Z being the lengths
of the semi axes of the ellipsoid). Unless the value of strain is known
at some point in the fold, a full model of fold development cannot
be made. This method assumes the processes operating to produce
the observed shape and strain are combinations of flexural flow,
tangential longitudinal strain and homogeneous flattening.
4.2. Multilayers

Fold shape is much more variable in multilayers than in single
layers (e.g. Fig. 2). Characteristic shapes include sinusoidal,
chevron, kinks e with axial surfaces inclined to the average
orientation of the layering e and conjugate (or box) folds. Straight-
limbed folds, either of chevron or kink style, imply effective
anisotropy, but do not require discrete layers (as in the case of kink
bands in slate) or brittle failure in the hinges. Chevron folds (Fig. 2d)
can develop in several ways: from initial sinusoidal shapes (e.g.
Johnson, 1977), by the appression of conjugate folds (see Price and
Cosgrove, 1990, Fig. 13.45) or by the intersection of kink bands
(Paterson and Weiss, 1966; Cobbold et al., 1971). For symmetric
folds, a chevron style is inherently favored by anisotropy (Bayly,
1974; Cobbold, 1976a and discussion above). A discussion of the
various styles and significances of folds in anisotropic rocks is given
by Price and Cosgrove (1990).

Bayly (1970, 1974) proposed methods for deriving information
on viscosity contrast and anisotropy from the geometry of chevron
folds in bilaminate materials, by considering relative hinge thick-
ening and change in limb length (Bayly, 1970) and by estimates of
the energy consumed in incremental shortening of chevron folds
with distinct hinge regions and straight limb regions (Bayly, 1974).
Many assumptions, including Newtonian viscosity, are involved in
applying these methods and they have not been subsequently
applied or tested in any significant way.
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Fig. 23. Plan view in the plane of the layering showing the effects of selective amplification of initial, random perturbations in the folding of an isolated viscous layer (nL ¼ 1.001) in
a viscous matrix with viscosity ratio, mL/mM ¼ 100 after amplification of 100. Contours are normalized by the maximum height of the surface above its mid plane. The length of the
side of the square region is 10 ld. (a) Newtonian layer, (b) power-law layer with nL ¼ 104 (Figs. 2D and 3D in Fletcher, 1995).
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Chevron folds tend to develop in a multilayered sequence with
stiff layers of similar thickness separated by thinner soft layers.
Ramsay (1974) showed how characteristic modifications to the
shape of the folds in the hinges, or accommodation structures,
based on geometrical considerations and the assumption that the
stiff layers tend to maintain constant length and thickness, were
required if individual unusually thick layers are introduced. The
typical accommodation structure is a keel-shaped or bulbous hinge
zone (Ramsay, 1974, Fig. 8). This structure can also be produced
when an unusual amount of slip is developed on the fold limbs in
individual bedding planes (Price and Cosgrove, 1990, p. 319e321).

The large variation in shape of multilayer folds suggests that
shape may potentially provide much more information on
b

a

d

e f

Fig. 24. Example of fit of a natural fold (not shown) by superposition of strain patterns app
thicknessedip (t0q vs q) classification of theoretical folded layer (line) and natural fold (dots).
showing strain ellipses with long axis orientation, assumed to be parallel with cleavage. (d)
the natural fold (aspect ratio is final amplitude/final width of the central (generating) fold su
and (f) Maximum stretch direction vs dip (4eq) diagrams for the outer and inner arcs respec
(g) Strain ratio vs dip (S1/S2 vs q) diagram for outer and inner arcs showing strain pattern p
mechanical properties than has so far been achieved, but the fact
that folds of a given shape can be arrived at by different processes
and that layers of varying thickness and rheological properties may
make up many multilayer fold packages makes realizing this
difficult.

5. Strain measurement from folds

5.1. Elementary buckle shortening

For rock layers that have folded by buckling, the most elemen-
tary calculation of strain assumes that all the layer shortening is
expressed in buckling. The bulk shortening stretch is the fold
c

g

lying the FoldModeler technique of Bobillo-Ares et al. (2004). (a) Ramsay’s normalized
(b) Initial configuration of theoretical layer. (c) Folded configuration of theoretical layer
Comparison of values of parameters of the modeled fold with corresponding values for
rface; to is thickness at the hinge, A is the amplitude of the outer arc of the final fold. (e)
tively showing data obtained for the modeled folded layer (line) and natural fold (dots).
redicted for theoretical fold (all data from Fig. 13, Bobillo-Ares et al., 2004).
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‘wavelength’, or series of wavelengths (recognizing that quasi-
periodic or non-periodic folds do not have wavelengths in the
mathematical sense) (Fig. 4c or 17a) divided by the arclength, the
same fold length measured around the folded layer. This method
has been employed since some of the earliest studies of fold belts,
including those of Claypole (1885), and Chamberlin (1910) in the
Appalachians. The same principle is employed in line-length
conservation in producing balanced and palinspastically restored
cross sections in fold-and-thrust belts (Dahlstrom, 1969).

For one fold, with wavelength, l, and the around-fold arclength,
L, the shortening strain, e (-ve) and stretch, S (<1), are defined
(Fig. 17):

S ¼ ð1þ eÞ ¼ l=L: (16)

Measurements of l and L must be made in a section perpen-
dicular to the fold hinges, and the assumption is that there is no
displacement gradient in the direction of the hinges.
5.2. Shortening according to fold shape

The method above assumes that all the layer shortening is
expressed in buckling: i.e. there is no internal layer shortening
preceding or accompanying folding. With this caveat, it is possible
to determine the amount of shortening for folds of different shapes,
such as sinusoids, circular arcs and types of angular folds (Currie
et al., 1962, Fig. 7; Johnson, 1970, Fig. 4.3; Treagus, 1997, Fig. 19.2),
as shown in Fig. 25. The relationships between stretch, S, and limb
dip, a, are very simple and explicit for circular and chevron folds,
but for a sinusoid of the form y ¼ m sin x, the stretch, S, cannot be
expressed explicitly and involves an elliptic integral (Treagus,
1997).

These purely geometric approaches are useful in providing
approximate or minimum bulk shortening for folds of a particular
shape (Fig. 25). Pure buckling folds in single layers might be
expected to follow the sinusoid curves more closely than the
circular or chevron shapes (as demonstrated by Schmalholz and
Podladchikov, 1999, for dips up to 50�) and these curves might be
a good approximation for thin stiff layers with viscosity contrasts of
�100.
a

Fig. 25. (a) After Currie et al. (1962, Fig. 7). Amplitude/half-wavelength, 2A/l, and limb dip
Fig. 19.2 from Treagus (1997), of limb dip vs stretch for circular, sinusoidal and chevron fol
5.3. Shortening in analog and numerical models

In an earlier review (Treagus, 1997), compilations of bulk model
shortening versus fold limb dip in analog and numerical models
(Fig. 26), sourced from a wide range of published fold studies,
showed that there is commonly between w5 and 20% bulk (layer-
parallel) shortening before buckles start to amplify measurably (at
around 10� limb dip), with the greater shortening for models with
lower viscosity ratios. A comparison of Figs. 25 and 26a reveals that
in the latter, the analog model with viscosity ratio ¼ 100
(Hudleston, 1973a; Hudleston and Stephansson, 1973) is almost
identical to curve S (sinusoid) in Fig. 25, if its origin is shifted to the
0.9 point (10% shortening). However, the numerical models in
Fig. 26b show curves with a straighter trend at higher limb dip, as
did several multilayer models not shown here.
5.4. Strain contour map of Schmalholz and Podladchikov

Schmalholz and Podladchikov (2001) provide a newmethod for
estimating strain and viscosity contrast from fold shape, based on
viscous and viscoelastic finite-amplitude fold modeling. The term,
fold shape, does not here mean shape analysis as considered in
section 4, nor the types of shape shown in Fig. 25. Instead, it
concerns amplitude/wavelength (A/l) and layer thickness/wave-
length (h/l) measurements plotted on a strain contour map
(Schmalholz and Podladchikov, 2001, Fig. 6), as shown in Fig. 27.
The theory and modeling behind this plot have been reviewed in
section 2 above. For any natural or modeled fold where A/l and h/l
can be measured, estimates of bulk strain (% shortening) and
viscosity ratio (layer/matrix) can be read from the contour lines
in Fig. 27. The strain is measured from the point at which the
nucleation amplitude (see Section 2.2) is reached. It will be an
underestimate if the initial amplitude is less than the nucleation
amplitude and an overestimate if it is greater. In addition it is
assumed that the fold initiated at the dominant wavelength. If it did
not, the growth rate will be less than that assumed for the plot and
thus the strain derived from it an underestimate. These underesti-
mations or overestimations are likely to be small. Schmalholz and
Podladchikov test their method against numerical and analog
experiments inwhich theactual strain is known, and illustrate itwith
two examples of folded layers pictured in Ramsay and Huber (1987,
Fig. 19.11) and Weiss (1972, plate 171). The A/l and h/l values for
b

, q, vs shortening for folds of different geometry - circular, sine, sawtooth and box. (b)
ds.
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Fig. 26. (a) Compilation of data on changes of limb dip with shortening for analog models, from Treagus (1997, Fig. 19.4), with original data from Hudleston and Stephansson (1973)
(solid lines e single-layer folds), Treagus (1972) (light shaded areae stiffer single layer folds with L/h of 11e15), (dark shaded area e softer single layer folds with L/h of 6e9). M1, M2
multilayers from Treagus (1972) (viscoplastic materials) and Johnson (1977) (elastic materials) respectively. (b) Compilation of data on limb dip vs shortening for single-layer folds
developed in theoretical and numerical models by various authors, as indicated, from Treagus (1997, Fig. 19.5a). Numbers by each curve in (a) and (b) indicate viscosity ratio, mL/mM.
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the former, given in Schmalholz and Podladchikov (2001, Table 2),
lead to a strain determination of 70e72% shortening for this fold
train; a significant shortening.

5.5. Scaled stretch and amplification, and stages of folding

Schmalholz (2006) provides another method of determining
strain associated with stages of single layer folding, but does not
measure the whole strain. This paper defines three stages of
folding, termed nucleation, amplification and kinematic growth.
Although reminiscent of Ghosh’s three stages of buckle folding
(Ghosh, 1993, p. 273) or three stages Treagus (1997) described as
Fig. 27. The strain contour map e amplitude/wavelength (A/l) plotted against thick-
ness/wavelength (h/l), from Schmalholz and Podladchikov (2001, Fig. 6), with contours
showing bulk shortening and viscosity ratios. See Fig. 28 for an explanation of the
black dot.
initial layer-parallel shortening, active buckling, and late fold ‘flat-
tening’, what distinguishes Schmalholz’s (2006) approach is that
the three stages are precisely defined (Fig. 16). Only the first stage
has a variable degree of strain, which is related to the viscosity ratio
and the initial amplitude. As reviewed earlier, Schmalholz presents
a scaled amplification equation, which allows the general amplifica-
tion curve to be drawn, as in Fig. 16. This approach derives from
earlier papers (Schmalholz and Podladchikov, 2000, 2001) where
the crossover strain and crossover amplitude were introduced that
mark the change from the nucleation to amplification stage (see
Sections 2.2, 3.1). Crossover strains may typically range from a few
% (for large viscosity) to about 16% for the example in Fig. 16 (based
on mL/mM z 50) and depend on the amplitude of the sinusoidal
waveforms that make up the initial layer irregularities.

Schmalholz (2006) demonstrates that if the bulk shortening is
normalized or “scaled” to the crossover strain, the 2nd and 3rd fold
stages (amplification, and kinematic growth) have almost identical
forms, for a range of viscosity ratios. However, the results appear to
derive from initial growth rates (given by ao in Schmalholz, 2006,
Fig. 2, equal to qo here) in the range of qo ¼ 10 to 26, that (according
to Schmalholz and Podladchikov (2001), eq. (5), and taking nL ¼ 1)
indicate viscosity ratios of 24e99. There must, therefore, be some
caution in applying Fig. 16 to all single-layer folds, irrespective of
other lines of evidence that might suggest viscosity ratios above or
below this range.

Note that there are some inconsistencies in the definitions and
notations in Schmalholz (2006, pp. 44e45). The scaled stretch (Ss in
Fig. 16) needs to be clarified as the total stretch (S > 1) divided by
the crossover stretch (not crossover strain), which would be better
termed Sc (rather than eC). It might be better to express the stretch
values as <1, i.e. contractional, as these relate more obviously to %
shortening strains associated with folding used by Schmalholz and
Podladchikov (2001) and Schmalholz (2006). However, the S > 1
values have been retained in Fig. 16, to be faithful to these citations,
and to follow the precedent set by Sherwin and Chapple (1968) and
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Fletcher (1974), who expressed the strain associated with the initial
layer-parallel shortening as T ¼ S1/S2, ¼ 1/S22, in which S2 is the
stretch in Eq. (16). This convention is also used in Section 2.2.

The amplification stage of folding, defined by the amplitude/
wavelength range of 0.05e0.15 (Fig. 16), is represented by a scaled
stretch from 1 to 1.25, equivalent to 20% shortening for this stage.
Beyond this, for limb dips of >45�, the fold continues to grow
kinematically. This growth is not truly kinematic, since the analysis
assumes that the arclength strains uniformly from inflexion to
hinge, which will not be the case at high amplitudes, especially at
low viscosity ratios.

We note that the amplification curve in Fig. 16 departs from the
folding trends for mL/mM ¼ 50 shown in Fig. 26, based on a range of
earlier analog and theoretical viscous models. For folds with limb
dips of 60� or 70�, Fig. 16 would lead to higher strain estimates than
those given by the curve in Fig. 26. However, the significance of
Schmalholz’s new graph (Fig. 16) is that it defines the middle
amplification stage of folding precisely, from scaled stretch of
1e1.25, regardless of viscosity ratio (within the limits stated above).

Schmalholz (2006) presents an example that combines this
‘scaled stretch’ method of strain estimation with the preceding
Schmalholz and Podladchikov (2001) method, as shown in Fig. 28.
The example is a folded quartz vein from Lisle (1995, p. 50). One
fold has been selected and measured; its A/l ¼ 0.45 and h/l ¼ 0.17
values, plotted on the strain contour map (Fig. 27), determine the
total shortening strain as 62%. These coordinates place the fold,
spatially, between the mL/mM ¼ 50 and 250 contours in Fig. 27, as
indicated by the black dot on that figure. The A/l value for this
example is then used to plot this fold on the scaled stretch graph
(Fig. 16). This indicates Ss ¼ 2.3, equivalent to 57% shortening
beyond the nucleation stage (from a scaled stretch value of 1.0 to
one of 2.3). Hence, for this example (Fig. 28), the three fold stages
emerge as: nucleation, 12% shortening (stretches 0.88 and 1.14)
amplification, 20% further shortening (incremental stretches 0.8,
1.25) kinematic growth, 46% further shortening (incremental
stretches 0.54, 1.85).

Multiplication of these three increments of stretch confirms the
total contractional stretch of 0.38, i.e. 62% shortening, stated above.
6. Information on strain and deformation history from
folded rocks

Theory and modeling have established that contraction of
layered rocks will result in buckle folds. However, it does not follow
that all folds in rocks are a result of simple shortening of layers, and
Fig. 28. Example of combining Figs. 16 and 27, after Schmalholz (2006, Fig. 8). The
inset drawing and set of measurements are for a fold in a quartz vein taken from Lisle
(1995). This fold is represented by an open circle on this plot and by a black dot on
Fig. 27, where determination of the total strain is made. See text for stretch and strain
values obtained for this fold.
isolated folds can arise through many mechanisms. Nevertheless,
where a layer of rock is disposed in a train of folds of quite regular
wavelength, such as discussed earlier, it is a reasonable assumption
that the primary process is buckling in response to layer short-
ening. In section 5, we reviewed a number of methods of deter-
mining bulk shortening strain from natural buckle folds. In this
section, we will consider what evidence folds might provide to
indicate the deformation history for the folded layers, on a local or
regional scale.

6.1. Inferring fold mechanisms from strains and fabric (fanning and
refraction of cleavage)

Two mechanisms for internal deformation associated with
parallel folding have become classics in structural geology, used
widely in text books and teaching: flexural flow and tangential
longitudinal strain (Ramsay, 1967, pp. 391e398). These two mech-
anisms for accommodating strain in a layer without altering its
thickness are shown in Fig. 29. Flexural flow (FF) has strain
concentrated on limbs, and is analogous to bending a stack of paper
(by sliding). Tangential longitudinal strain (TLS) has strain concen-
trated in the hinges, and is analogous to bending a continuous
isotropic material such as rubber. Both fold mechanisms produce
parallel folds (Class 1B, Ramsay, 1967, p. 366), with no change of
orthogonal thickness (although there are intra-layer mutually
compensating changes of thickening in the inner arc and thinning
in the outer arc in the case of TLS), and have convergent dip isogons.
However, the internal strain trajectories, and the cleavage traces e
assuming cleavage is parallel to the XY plane of strain e are
significantly different for FF and TLS fold mechanisms. One way of
illustrating the difference is by making a combined isogonestrain
classification of the folds (Treagus, 1982). Although this plot cannot
represent the intensity of strain in folds, the orientations of strain
trajectories or cleavage traces are sufficient to distinguish certain
folding mechanism from others, such as FF from TLS. A variation of
TLS is inner arc collapse, whereby there is no strain in the direction
normal to layering, and all the folding is accommodated by layer-
parallel shortening strain, associated with removal of material,
most likely by pressure solution (Hudleston and Holst, 1984;
Hudleston and Tabor, 1988). The principal strain orientations are
the same as for TLS, but the neutral surface now lies at the outer arc
of the fold.

Some of the earliest applications of finite element (FE) analysis in
structural geology were used in the modeling of folds and revealed
their deformation patterns. Dieterich (1969) and Dieterich and
Carter (1969) first modeled the stress and strain patterns associ-
ated with folding of viscous single layers, and made comparisons
with cleavage patterns in natural folds. Shimamoto and Hara (1976)
used the FE method to examine the geometry and strain in single
layer folds, and their results showed strain trajectories close to
layer-orthogonal in the folded layer, indicating that tangential
longitudinal strain is the dominant mechanism (see Fig. 29). There
have been many subsequent FE studies of folding in single and
multilayer folds (e.g. Lan and Hudleston, 1995b; Hudleston et al.,
1996) that confirm the predominance of the TLS mechanism for
viscous folding models. Hudleston and Holst (1984) analyzed strain
in a folded limestone layer, and concluded that TLS was accompa-
nied by some degree of inner-arc volume loss through pressure
solution. Bobillo-Ares et al. (2000, 2006) considered compatibility
issues associated with the TLS mechanism, and use kinematic and
geometric modeling to examine the developments of strains,
neutral surface and problems of area change. They conclude,
illustrated by examples, that TLS folding in nature is not perfectly
resolvable without the effects of area/volume changes and other
geometrical effects in hinge regions, echoing some of the effects
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Fig. 29. Illustrations of flexural flow (a) and tangential longitudinal strain folds (b) showing strain ellipses (from Hudleston et al., 1996). The overall shape defined by the inner and
outer arcs is identical in each case.
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described for chevron folds (Ramsay, 1974; Bastida et al., 2007),
considered below. According to Bobillo-Ares et al. (2006), the
presence of radial wedged quartz veins in competent beds in fold
outer arcs, and bulges or protuberances in inner arcs, are indicative
of TLS processes in nature.

Returning to the alternative parallel folding mechanism, flexural
flow (Fig. 29), we previously questioned FF as a valid mechanism for
single layer folding (Hudleston et al., 1996), and concluded from FE
models that such a layer would need to have a very high layer-
parallel anisotropy (d > 50) to approach the FF mechanism.
However, in a bilaminate multilayer that comprises alternating stiff
and soft layers, if there are enough layers to represent the material
as statistically anisotropic, the whole multilayer in bulk might be
considered to have folded according to flexural flow. On a smaller
scale, the alternating stiff and soft layers in the multilayer would
fold by different mechanisms: the stiff layers approximately by TLS,
as discussed above, with strain and fabrics concentrated in the
hinge regions; the softer layers by a combination of flexural flow
and strain accommodation; and the boundaries possibly by some
degree of (flexural) slip. Fig. 30 shows typical patterns of alter-
nating convergent and divergent cleavage fans, hinge fans and
cleavage refraction that might be expected in folded multilayers of
this kind, according to the strain patterns shown in FE models
(Dieterich, 1969; Shimamoto and Hara, 1976), and models of strain
fanning and refraction (Ramsay, 1967, p. 403; Roberts and
Strömgård, 1972; Treagus, 1988, 1997). Such patterns (Fig. 30) are
characteristically seen in interbedded sandstones/psammites and
mudstones/pelites, in our experience (e.g. Fig. 31a,b).

The processes of folding in limestone/mudstone alternations,
however, may be more complex than shown in Fig. 30. A study of
three small folds by Ormand and Hudleston (2003) revealed
Cleavage

Bedding-cleavage
intersection

Fig. 30. Schematic typical cleavage fanning in fold hinges and refraction in limbs
reflecting variations in strain developed in multilayers consisting of alternating stiff
and soft members.
flexural flow as the predominant mechanism of single-layer
folding, as well as variations according to scale. Considered
together with the results of Hudleston and Holst (1984) discussed
above, folded carbonate layers may exhibit a wide range of strain
patterns and deformation mechanisms. Our earlier conclusion
(Hudleston et al., 1996) that flexural flow is an unlikely mechanism
for single-layer folding, except in highly anisotropic rocks, would
appear to be contradicted in some instances in limestones.

The flexural slip mechanism (Tanner, 1989) is somewhat different
from the mechanisms of folding discussed above. The essential
characteristic is layer-parallel or bedding-plane slip, and flexural
slip folding provides no additional definition of strain within the
layers. Tanner’s flexural slip folds are essentially chevron folds. They
are defined mainly by slip between layers, indicated by geological
features such as bedding-parallel veins, fractures and duplexes,
plus slickenlines and slickenfibres that provide clear information
on slip sense. In contrast, the Ramsay (1974) model for chevron
folding has bonded layers, and deformation by variable amounts of
flexural flow (FF) within the layers. Our own observations of
chevron folds in alternating sedimentary sequences, especially the
presence of convergent cleavage fans in hinge regions of competent
beds and absence of strong strain fabrics on the limbs, not
dissimilar from the patterns in Fig. 30, lead us to conclude that
there is generally a significant component of tangential longitu-
dinal strain in competent chevron fold hinge zones.

Bastida et al. (2007) provide kinematic models of chevron folds
using a program, FoldModeler, to find the best combination of
strain accommodation mechanisms in competent layers that can
account for the observed strain and fabric patterns in natural
chevron folds. They show that a sequence of different mechanisms
is required for a good match, and that for angular folds with very
strong curvature and narrow hinge zones, equiareal tangential
longitudinal strain (ETLS) cannot be the exclusive mechanism in
competent beds: other mechanisms and/or area change need to
take place.

In the discussions above, we mainly use strain patterns and
associated fabrics to infer the mechanisms of single or multilayer
folding, but there are other geological structures and features that
provide evidence for the deformation associated with folding.
Veins, slickenlines and fibres and duplex fractures were referred to,
above, in terms of evidence for bedding-plane slip and flexural slip
(Tanner, 1989). Another important source of geological evidence is
given by folding of layers that contain oblique markers or surfaces,
such as folded cross-bedding or earlier fabrics (Williams, 1979;
Aller et al., 2010; Bobillo-Ares et al., 2009). These last authors
provide computer modeling of folding of two inclined surfaces by
a range of mechanisms including FF and TLS plus ‘flattening’, to
seek ‘best fits’ to natural examples. Their two examples of folded
sandstone beds, one containing cross bedding, the other an earlier



Fig. 31. (a) Buckle folds in siltstone layers in slates with cleavage that fans symmetrically about the fold axial surfaces, Boscastle, Cornwall, England; scale in inches. (b) Cleavage
refraction through graded sandstone and mudstone beds on an anticlinal fold limb, Widemouth, Cornwall; hammer head 15 cm. The triangular cleavage fan at the hinge has been
highlighted in white. (c) Flattened buckle folds in quartz-rich layer in schists, near Cap de Creus, Spain; coin 2.5 cm. (d) Largely passive similar folds in amphibolitic gneiss in highly
sheared rocks at the base of a Caledonide basement thrust sheet, Swedish Lapland; compass 8 cm.
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fabric, lead to the conclusion that folding was by a combination of
mechanisms: flexural flow, tangential longitudinal strain and
‘flattening’.

The concept of fold flattening and flattened parallel folds was
introduced by Ramsay (1962a, 1967) to explain folds of class 1C
geometry (e.g. Fig. 31c). Theoretical curves for different amounts of
‘flattening’ (homogeneous pure shear) of an initially parallel (1B)
fold can be drawn within the 1C field of t0�a and dip-isogon fold
classification graphs (Ramsay, 1967, Figs. 7e79; Hudleston, 1973c).
Using examples of ptygmatic folded veins, Hudleston and
Stephansson (1973, Fig. 9) revealed that the t0�a plots have close
fits to flattening curves, but that the values of flattening deforma-
tion show quite a wide range, for different fold limbs in one fold
train (strain ratios of 0.2e0.7), indicating inhomogeneous flat-
tening on quite a small scale. In a similar way, Schmalholz and
Podladchikov (2001), noted that not all folds in a layer grow to
the nucleation amplitude simultaneously, depending on both initial
amplitude and the initial wavelength. Thus folds in the same fold
train can be at different points on the scaled amplification curve at
the same time. In addition, for power-law materials the effective
viscosity is a function of stress in the layer and this may vary if the
folds grow asynchronously. Local development of serial folds may
relieve stress in neighbouring sections and thus change the effec-
tive viscosity ratio (see Mancktelow, 1999). Folds at low viscosity
contrasts may thus attain high amplitudes at different times and be
subjected to different amounts of flattening at a late stage. Useful
methods for estimating the flattening component of strain in
initially parallel folds have been proposed by Srivastava and Shah
(2006, 2008).
A large enough additional flattening or homogeneous pure
shear imposed on a parallel (1B) fold would virtually transform it
into a class 2, or similar fold (Fig. 31d). Similar folds (Ramsay, 1967,
p. 421) are generally seen in ductile rocks where layering appears to
have low viscosity contrasts, and deformation is great. They are also
seen in salt and ice flows, where similar-style folds are shown by
fine marker layers (Hudleston, 1976; Talbot, 1979; Talbot and
Jackson, 1987). Whether such folds are the result of extreme flat-
tening (homogeneous deformation) of weak buckling perturba-
tions, or are a result of differential simple shear (Ramsay and Lisle,
2000, p. 825) may only be answered by examining their fabrics
and strain patterns. A true axial-planar cleavage would suggest
extreme flattening; divergent cleavages, in particular with asym-
metrical development on either fold limb, suggest differential shear
folding.

The fanning and refraction of cleavage, such as the patterns
shown in Fig. 30 that can help to distinguish different mechanisms
of folding, can be used in other ways. The sense of cleavage
refraction across alternating competent and incompetent layers on
folds limbs (e.g. Fig. 31a,b), can be used qualitatively to indicate
relative increases and decreases of effective viscosity. To attempt to
be quantitative, assumptions need to be made. For example, if it is
assumed that cleavage approximately represents the principal XY
plane of strain, for both competent and incompetent rocks,
cleavage refraction can be taken as a direct indicator of strain
refraction (Treagus, 1983, 1988). However, orientations of cleavage,
alone, do not provide sufficient data to determine strain values, and
thus are insufficient to determine effective viscosity ratios across
boundaries. If, instead, it is assumed that cleavages initiated before
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folding and are passively deformed bedding-orthogonal marker
surfaces (Gray, 1981), the fans and refraction patterns could be used
to determine the strain associated with folding. Treagus (1999)
provided a possible compromise, and demonstrated that cleavage
traces may be sufficiently close to deformed layer normals, under
the conditions of folding and deformation, to provide a measure of
shear strain across lithological boundaries, thus yielding informa-
tion on effective viscosity ratios (which are the inverse of the shear-
strain ratio). Examples are illustrated in Treagus (1999, Fig. 4) for
using cleavage refraction on fold limbs (e.g. Fig. 31a,b) to estimate
approximate viscosity ratios of greywacke/slate. A gradual change
of cleavage orientation in a graded bed (e.g. Fig. 31b) can also
indicate ‘way up’, a feature that can be useful in mapping of
geological structures. In a related approach, Treagus et al. (2003)
illustrated how the sense of cleavage refraction around a much-
studied anticline in Britain helps to reveal its two-phase fold
history and hinge migration.

6.2. Information from asymmetry of folds on different scales

Folds are seen on a variety of scales in orogenic belts, and a long-
held method used by structural geologists in the field is to use the
asymmetry and vergence of small-scale folds to indicate the
geometry of larger-scale folds. In early to mid-20th Century struc-
tural geology texts, small-scale asymmetric folds were termed drag
folds (e.g. Leith, 1923, p. 176; Billings, 1954, p. 78) and envisaged to
be the result of shearing or flexural slip on larger-scale fold limbs,
and were also termed parasitic folds (de Sitter, 1964, p. 279; Ramsay,
1967, p. 396). However, seminal papers by Ramberg (1963, 1964)
established that asymmetric minor folds would have initiated as
Fig. 32. (a) Parasitic folds in quartz vein in schist changing symmetry around a larger structu
folds with thickened hinges and cleavage at a low angle to average bedding, in limestone laye
quartzite in Caledonide cover nappes, Trollheimen, Norway; knife 9 cm. See Hansen (1971, Fi
iron-rich schist, reflecting the sense of displacement in a dextral shear zone, Archean rock
symmetrical fold waves, and become asymmetric by modification
around larger-scale folds, by further shortening and layer-parallel
shearing.

Treagus and Fletcher (2009) address the question of why small-
scale folds initiate in multilayered rocks and are preserved in
larger-scale folds in fold belts, when, as discussed in 2.4, theory and
modeling have shown thatmultilayers comprising numerous layers
will fold with a stronger amplification than a single or a few layers.
This might suggest that large folds affecting numerous layers would
fold more strongly than smaller folds affecting one or two layers,
whereas field studies and minor-major fold relationships suggest
the opposite. Treagus and Fletcher (2009) find that small folds in
one layer are likely to outgrow larger multilayered folds, with the
potential to become minor (parasitic) folds, if the thin layer is more
competent than the rest, and/or if the multilayer is narrowly or
stiffly confined. Fig. 15 illustrates the process, and the progressive
change from initially symmetric to asymmetric minor (parasitic)
folds around a major fold with progressive deformation, as classi-
cally proposed by Ramberg (1964). A natural example is shown in
Fig. 32a, and strongly asymmetric folds that may lie on the flank of
a larger fold in Fig. 32b. Other examples of folds on two or more
different scales are shown in Figs. 1d and 2a.

Ghosh and Sengupta (2010) describe a somewhat different
situation in which multilayer folds in mica schist sandwiched
between more competent quartzite layers display the asymmetry
of parasitic folds around the longer wavelength folds in the
quartzite. It is the anisotropy of the mica schist in this case that
results in internal folding (see Section 2.4), which has a greater
buckling instability than the buckling of the quartzite layers in an
anisotropic matrix.
re, Archean rocks near Geraldton, Ontario; coin 2.4 cm. (b) Strongly asymmetric buckle
r in slates, Hele Bay, Devon, England; compass 15 cm. (c) Cross-section of sheath fold in
g. 34) for a 3D representation of this fold pattern. (d) Asymmetric folds in quartz vein in
s near Geraldton, Ontario; coin 1.9 cm.
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Minor folds not only provide valuable information from their ‘S’
and ‘Z’ asymmetries (fold vergence; Bell, 1981) that reveal larger-
scale and regional folds and aid geological mapping. Results in
Treagus and Fletcher (2009) suggest that the relative scales of
folding, and the presence of smaller with larger folds, can poten-
tially provide information on the relationships of rheology and
stratigraphy in multilayered rocks. This work ties together two
classical studies and concepts: the structural lithic units of Currie
et al. (1962); and the orders of folding of Ramberg (1964).

Most of this review has concentrated on the theory and
modeling of buckle folds that develop in single or multiple layers
that are parallel to the principal shortening deformation. The usual
assumption is horizontal layering, horizontal shortening, and
symmetric upright folds. However, folds in nature, even those that
result from one phase of deformation, are rarely perfectly
symmetrical. Large-scale fold asymmetry, and inclined fold axial
planes, are common field observations and can have many expla-
nations, some of which are suggested here. Local and variable
asymmetry of buckle folds will be inherited from the initial
perturbation spectrum, as seen in analog and numerical models
(e.g. Figs. 10 and 14, Mancktelow, 2001). Perhaps the simplest
reason for systematic fold asymmetry in the fold profile view,
investigated by the second author many years ago (Beech, 1969;
Treagus, 1972), is that the layers are oblique to the principal
shortening, but parallel to the intermediate strain axis (Y). Layering
is contracted but also undergoes rotation and shearing, progres-
sively changing folds that initiate as symmetric waves (Treagus,
1973), into asymmetric folds (Anthony and Wickham, 1978). The
fold axis would be expected to parallel Y, but the axial plane would
initiate perpendicular to layering, and only approach the bulk XY
plane when the folds are quite tight and asymmetric. Such
a scenario might be initially dipping stratigraphy, such as on
a continental shelf, undergoing subhorizontal crustal shortening.
Buckle folds in a wedge-shaped fold-thrust belt would develop
with a polarity and regional sense of overturning or vergence that
reflects the asymmetry of and shear within the wedge (e.g. Rowan
and Kligfield, 1992), and fault-related folds in fold-thrust belts are
asymmetric reflecting the geometry and sequence of development
of the thrusts with which they are associated. (e.g. Suppe, 1983,
1985)

Another major cause of fold asymmetry, which has important
regional structural and tectonic implications, is folding associated
with shear zones, discussed in the following section.

6.3. Folds in shear zones

Folds are commonly found in ductile shear zones, which are
common in the mid to deep levels of the crust and in weak mate-
rials such as evaporites at higher levels. The strain gradients that
define ductile shear zones may produce passive folds in layering
that lacks significant rheological contrasts, and similar folds with
axial surfaces sub-parallel to the shear zone boundaries reflect the
combination of large shear strains with irregularities in the layering
and low rheological contrasts (e.g. Fig. 31d, Hudleston, 1977;
Carreras et al., 2005). Fold hinges typically form at a high angle to
the shear direction, but with progressive strain, they tend to rotate
towards parallelism with the shear direction (e.g. Escher and
Watterson, 1974), in three dimensions forming sheath folds (e.g.
Cobbold and Quinquis, 1980; Skjernaa, 1989; Fig. 32c), which are
a key indicator of sense of shear in shear zones (e.g. Simpson, and
Schmid, 1983; Hanmer and Passchier, 1991). Fold asymmetry is
also used as a shear-sense indicator (e.g. Fig. 32d), but this must be
applied with care, as reversals in apparent sense of shear can arise
in a number of ways, as a result of large strains and 3D effects
(Ramsay et al., 1983; Passchier and Williams, 1996; Alsop and
Holdsworth, 2002). Carreras et al. (2005) provide a good review
of the kinematics of folds of various types in shear zones.

Mechanical instabilities can lead to folding in layered or aniso-
tropic rocks in shear zones. Buckling instabilities in single layers
will exist if the layer is oblique to the shear zone boundary and
there is a component of shortening parallel to the layer. Initially the
folds produced are symmetric, and they become modestly asym-
metric with increasing strain (Ghosh, 1966; Manz and Wickham,
1978). Asymmetry of cleavage refraction in the two limbs is more
marked than the asymmetry of fold shape, with stronger refraction
in the long limb than in the short limb (Viola and Mancktelow,
2005). In multilayered, effectively anisotropic media or homoge-
neous anisotropic media, folding instabilities exist, the effects of
which depend on the orientation of the plane of anisotropy to the
shear plane. The structures produced include kink bands, crenula-
tions and shear bands. They have been studied experimentally
(Ramberg and Johnson, 1976; Williams and Price, 1990; Mandal
et al., 2004) and treated conceptually and analytically (Platt,
1983; Dennis and Secor, 1987; Fletcher, 2005). Fletcher (2005)
showed that a weak instability existed even for the case of the
plane of anisotropy parallel to the shear plane, although amplifi-
cation is followed by deamplification as the structure rotates under
the influence of the shear.

Flanking structures are isolated folds and shear bands associated
with strain perturbation around veins, dikes or fractures in shear
zones (Fig. 33a, Hudleston, 1989; Passchier, 2001; Grasemann and
Stüwe, 2001). Since different mechanisms can produce these
structures, care must be used when using them as sense of shear
indicators (Passchier, 2001; Grasemann and Stüwe, 2001). Kocher
and Mancktelow (2006) show that anisotropy significantly influ-
ences the development of flanking structures, which must be taken
into account when considering these structures as shear sense
indicators. They also suggest that the geometry of these structures
may provide an estimate of the degree of anisotropy of rocks in
shear zones.

6.4. Three-dimensional features of folds: localization, transected
folds, and refolded folds

Until now, we have mainly concentrated on folds in single or
multiple layers, in theory, models and naturally-deformed rocks,
and with the assumption that the folds form by processes of
buckling. The folds initiate as a series of sinusoidal-type waves that
are explicable accordingly to buckling theory and modeling for the
rheology concerned, as discussed in section 2. Wewould argue that
this approach is valid for a wide range of geological settings for
ductile rocks in orogenic belts. However, a geologist studying
higher-level sedimentary rocks, upon discovering one or more
folds, might come to a different conclusion. For him or her, the fold
might be interpreted as an important localized structure, indicating
faulting at depth or out of section. Buckling might not be regarded
as the primary cause, unless a sequence of sinusoidal folds are seen.
Folds that occur as localized features, whether they affect soft
sediments (e.g. Woodcock, 1976), are forced or drape folds (e.g.
Chester et al., 1988; Cook, 1988), or are variously fault-related
(Suppe, 1983, 1985; McClay, 1992), provide important information
about the conditions of the rock and the local deformation, but the
varieties are too great to contain in this review. For fault-related
folds, readers are referred to a Special Issue of this Journal
(Wilkerson et al., 2002) for information and review.

Another example of localized folding would be the process of
folding according to the thermal-mechanical feedback model of
Hobbs et al. (2008), by which thermally induced weakening
promotes buckling at low values of l/h, with deformation concen-
trated in shear zones in the stiff layer connecting adjacent inner arc



Fig. 33. (a) Flanking folds associated with rotated fractures/veins in a dextral shear zone in Archean biotite schist, Rainy Lake, Minnesota; coin 2.4 cm. White arrows indicate
fractures about which flanking folds formed. (b) Cleavage-transected fold in sandstones and mudstones, Southern Uplands, Scotland (Stringer and Treagus, 1980, Fig. 5c); hammer
head 18 cm. The hammer, parallel to the fold axis, is at a clear angle to the axial-planar cleavage. (c) F1/F2 fold interference marked by passive behavior of layers in Moine schists.
Loch Monar, Scotland; coin 3 cm. Axial surface traces of 2 F2 folds marked by dashed lines. (d) F1/F2 fold interference complicated by buckling of white pegmatitic veins in both F1
and F2 deformations, Maggia nappe, Ticino, Switzerland; coin 2.3 cm.
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fold hinges. We and others have recently discussed and questioned
the validity of this model as a significant process of small-scale
geological folding (Treagus and Hudleston, 2009; Hobbs et al.,
2009, 2010; Schmid et al., 2010), and will not repeat the argu-
ments here.

Folds in which the cleavage is observed to be oblique to the fold
axis and axial plane, i.e. non-axial-planar, are termed transected
folds (Borradaile, 1978; Stringer and Treagus, 1980). An example is
shown in Fig. 33b. One explanation is buckle folding of layers that
are oblique to all three principal directions of strain (Flinn, 1962;
Treagus and Treagus, 1981): the fold axis for a 3D-oblique layer
(parallel to the longer axis of the sectional ellipse) would not
generally coincide with the intersection of the XY principal plane
and the layer. For this type of oblique deformation, assuming
cleavage forms parallel to the XY plane, the cleavage would be
oblique to the axial plane. Treagus and Treagus (1981) investigated
the structures that would be associated with folding of generally
oblique layers in a triaxial strain ellipsoid, showing that transection
angles (Borradaile, 1978) rarely exceed 10�, but increase from flat-
tening to constrictional strain (i.e. with the strain ellipsoid shape
factor; Flinn, 1965). As significant as the transection are the
expected values for axial (hinge) migration, fold plunge variations,
and the degree of cylindroidal or periclinal geometry, for layers
folding in constrictional to flattening strain ellipsoids (Treagus and
Treagus, 1981). Periclinal folding, strong plunge variations, and
folding in two directions (cross folding) were suggested as indica-
tors of folding in a constrictional deformation environment.

The occurrence of transected folds in the Caledonian-Appala-
chian orogenic belt (e.g. Fig. 33b), where the deformation is
recognised to contain components of transpression (Harland, 1971;
Sanderson and Marchini, 1984), has led to conclusions that clock-
wise-transected folds are direct evidence for sinistral transpressive
deformation (Soper and Hutton, 1984; Soper et al., 1987; Woodcock
et al., 1988), and vice versa. However, Treagus and Treagus (1992)
questioned the theoretical basis for equating transected folds
with transpression, and concluded that there is no obvious expla-
nation for transected folds in horizontal layers in simple trans-
pression (Harland, 1971; Sanderson and Marchini, 1984), unless
cleavage does not does not track the finite XY plane of strain (see
Soper, 1986). For the case where layers have different initial
orientations (strikes and dips) with respect to a horizontal trans-
pression, analogous to folding of oblique layers discussed above,
transected folds would now be expected, but there is no simple
relationship between, for example, clockwise transection and
sinistral transpression: the relationships would vary according to
the orientations of the folding layers (see Treagus and Treagus,
1992, for more examples and values).

We now turn to polyphase deformation, and the information
that polyphase and refolded folds (e.g. Fig. 33c,d) can provide about
the deformation of an area. The patterns of refolding and fold
interference, classically described by O’Driscoll (1962a, 1962b) and
Ramsay (1962b, 1967, chapter 10) and classified by Thiessen and
Means (1980) and Grasemann et al. (2004), make up one of the
modeling sessions in Ramsay and Lisle (2000, session 35). The two
interfering fold phases are bothmodeled as sinusoidal fold-forming
simple shear deformations (i.e. similar folds): the ‘interference’
map patterns are produced geometrically, without the involvement
of mechanics of buckling. This is a useful way of determining the
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characteristic geometry of fold interference (see Ramsay, 1967,
Fig. 10e13) according to the relative orientations of the two fold
phases: patterns such as egg-box, crescent, etc. However, it is
known from analog experimental studies in systems with rheo-
logical contrasts (Ghosh and Ramberg, 1968; Watkinson, 1981;
Odonne and Vialon, 1987; Ghosh et al., 1992, 1993, 1995; Grujic,
1993; Johns and Mosher, 1996; Sengupta et al., 2005), that the
geometry of the ‘first folds’ will influence the ‘second folds’. The
studies by Ghosh and others reveal the 3D complexities that arise in
interfering folds on different scales in materials with rheological
contrasts. The folds shown in Fig. 33d involved buckling during two
separate phases of deformation, this being mechanically easiest
when, as here, folds of the two phases are coaxial.

Watkinson and Cobbold (1981) showed that earlier fold axes or
lineations will act as a linear anisotropy, and may ‘control’ the
orientation of later fold axes. Hence, it should not necessarily be
assumed that the axis of later folding and small-scale fold hinges
and crenulations, exactly reflect a position perpendicular to the
maximum shortening direction for the later deformation. Never-
theless, and despite these reservations, the patterns of refolding,
the presence of small-scale folds and crenulated fabrics, and the
orientations of fold axes and fabrics of different generations
provide a valuable resource for gaining information about regional
deformations and tectonics, and have played a historically impor-
tant part in documenting and unravelling the deformation of many
parts of the Earth’s crust (see Turner and Weiss, 1963 and Ramsay,
1967 for seminal examples of earlier work).

7. Future work

The mechanical processes that produce folds in rocks are now
fairly well understood, based on a solid body of theoretical and
modeling work, tied to a number of careful field studies. Questions
remain, however. In the past dozen years or so, attention has been
paid to possible elastic effects, in addition to the clear importance of
viscous behavior, on fold development. If rocks behave in a visco-
elastic manner (with Maxwell or more complex rheology) stress
level or strain rate becomes important in determining how folds
develop - if the strain rate or stress level is high enough - and non-
linear effects may become significant. It is not yet clear, however, if
elastic properties are important in natural fold development,
especially for the small-scale folds so common in most orogenic
belts. It will be important to develop criteria that allow determi-
nation of whether or not elastic properties play a role in natural fold
development. Some of the work reviewed here does suggest that
such criteria may be developed. Other processes or phenomena
that have been suggested as controlling fold development,
including thermal-mechanical feedback, also need to be tested
against well-constrained field examples.

The greatly increased power of modern computers allows
increasingly realistic deformational scenarios to be modeled, and
this offers the prospect that both forward and reverse modeling
may be carried out in efforts to find the combination of rock
properties and deformational conditions that best accounts for
observed structures. With increasingly sophisticated tools to
determine conditions of temperature, pressure and measurement
of age, and thus strain rate, and increased ability to interpret
microstructures in terms of rheological properties, strain rate and
state of strain, the possibility exists of tightly constraining condi-
tions of deformation and mechanical controls on natural folds.
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Appendix. Symbols used

A Amplitude
Ao Initial amplitude
B Constant in power law
_e Strain rate
EL/EM Elasticity (Young’s modulus) ratio of layer to matrix
G Elastic shear modulus
h Thickness of individual layers
ho Initial thickness of individual layers
H Thickness of multilayer package
k Wave number, k ¼ 2ph=l
ko Initial wavenumber
Ki Curvature index, defined in Fig. 18.
L Arclength
Lo Initial arclength
L=h Mean value of L/h for a fold population
n Power law exponent
n* Effective power-law exponent in non-plane strain

conditions
nL, nM Power law exponents of layer and matrix
N Number of stiff layers in a multilayer package, or total

layers in a package
P Layer-parallel compressive stress
q(k) Growth factor
Q Rheological parameter in Eq. (8), Q ¼ ffiffiffiffiffi

nL
p

R00

R Ratio of viscous to elastic dominant wavelengths,
R ¼ ldv/lde

R0 Ratio of normal viscosities for anisotropic buckling,
R0 ¼ m0nM=m0nL

R00 Effective viscosity ratio for anisotropic buckling,
R00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0nMm0sM

q
=m0nL

s Spacing of competent layers in a multilayer package
S Stretch
S1, S2 Principal stretches in plane strain (the xz plane), with

S1 � S2 and S1S2 ¼ 1
Sc Crossover stretch
Ss Scaled stretch
t Time
t0 Normalized thickness in Ramsay thickness-dip plot
T Ratio of principal stretches, T ¼ S1/S2
x,y,z Coordinate system, with x parallel to the shortening

direction in plane strain, z perpendicular to x in the plane
of strain.

q Limb dip
a1, a2 Fractions of thicknesses of layers of viscosities m1 and m2 in

multilayer package
aL, bL Functions of nL, defined in Eq. (9)
d Anisotropy factor, d ¼ mn/ms
dL,dM Anisotropy factors of layer and matrix
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l Wavelength
ld Dominant wavelength
lp Preferred wavelength
lo Initial wavelength
m Viscosity
mL,mM Viscosities of layer and matrix
mn, ms Normal and shear viscosities
mL
n,mLs Normal and shear viscosities of layer (and similar for

matrix)
m0L and m0M Viscosities under the base rate of flow
n Poisson’s ratio
x Ratio of strain rates in x and y directions, _ey= _ex, in buckling

under non-plane strain
sx Total normal stress in layer
sx Uniform normal stress in layer (membrane stress)
~sx Normal fiber stress in layer
s Dimensionless time, s ¼ � _ext,
4 Maximum stretch direction in fold profile
References

Abbassi, M.R., Mancktelow, N.S., 1990. The effect of initial perturbation shape and
symmetry on fold development. Journal of Structural Geology 12, 273e282.

Aller, J., Bastida, F., Lisle, R.J., Ramsay, J.G., 2010. Photograph of the month: flexural
slip folding of foresets in cross-bedded sandstones. Journal of Structural
Geology, 725e726.

Alsop, G.I., Holdsworth, R.E., 2002. The geometry and kinematics of flow pertur-
bation folds. Tectonophysics 350, 99e125.

Anthony, J.M., Wickham, J.S., 1978. Finite-element simulation of asymmetric folding.
Tectonophysics 47, 1e14.

Bastida, F., Aller, J., Bobillo-Ares, N.C., 1999. Geometrical analysis of folded surfaces
using simple functions. Journal of Structural Geology 21, 729e742.

Bastida, F., Aller, J., Bobillo-Ares, N.C., Toimil, N.C., 2005. Fold geometry; a basis for
their kinematical analysis. Earth-Science Reviews 70, 129e164.

Bastida, F., Aller, J., Toimil, N.C., Lisle, R.J., Bobillo-Ares, N.C., 2007. Some considerations
on the kinematics of chevron folds. Journal of Structural Geology 29, 1185e1200.

Bayly, M.B., 1970. Viscosity and anisotropy estimates from measurements on
chevron folds. Tectonophysics 9, 459e474.

Bayly, M.B., 1974. An energy calculation concerning the roundness of folds. Tecto-
nophysics 24, 291e316.

Beech, S.H., 1969. Buckling of single and multi-layers oblique to principal
compressive stress, and its bearing on the problem of asymmetric fold forma-
tion. M.Sc. thesis (unpublished), Imperial College, University of London.

Bell, A.M., 1981. Vergence: an evaluation. Journal of Structural Geology 3, 197e202.
Billings, M.P., 1954. Structural Geology. Prentice-Hall Inc., New Jersey.
Biot,M.A.,1961. Theory of folding of stratified viscoelasticmedia and its implications in

tectonics and orogenesis. Geological Society of America Bulletin 72, 1595e1620.
Biot, M.A., 1964. Theory of internal buckling of a confined multilayered structure.

Geological Society of America Bulletin 75, 563e568.
Biot, M.A., 1965a. Mechanics of Incremental Deformations. John Wiley and Sons,

New York.
Biot, M.A., 1965b. Theory of similar folding of the first and second kind. Geological

Society of America Bulletin 76, 251e258.
Biot, M.A., 1965c. Further development in the theory of internal buckling of

multilayers. Geological Society of America Bulletin 76, 833e840.
Biot, M.A., Ode, H., Roever, W.L., 1961. Experimental verification of the theory of

folding of stratified viscoelastic media. Geological Society of America Bulletin
72, 1621e1632.

Bobillo-Ares, N.C., Bastida, F., Aller, J., 2000. On tangential longitudinal strain
folding. Tectonophysics 319, 53e68.

Bobillo-Ares, N.C., Toimil, N.C., Aller, J., Bastida, F., 2004. FoldModeler; a tool for the
geometrical and kinematical analysis of folds. Computers and Geosciences 30,
147e159.

Bobillo-Ares, N.C., Aller, J., Bastida, F., Lisle, R.J., Toimil, N.C., 2006. The problem of
area change in tangential longitudinal strain folding. Journal of Structural
Geology 28, 1835e1848.

Bobillo-Ares, N.C., Bastida, F., Aller, J., Lisle, R.J., 2009. An approach to folding
kinematics from the analysis of folded oblique surfaces. Journal of Structural
Geology 31, 841e852.

Borradaile, G.J., 1978. Transected folds: a study illustrated with examples from
Canada and Scotland. Geological Society of America Bulletin 89, 481e493.

Burg, J.-P., Podladchikov, Y., 1999. Lithospheric scale folding: numerical modelling
and application to the Himalayan syntaxes. International Journal of Earth
Sciences 88, 190e200.

Carreras, J., Druguet, E., Griera, A., 2005. Shear zone-related folds. Journal of
Structural Geology 27, 1229e1251.

Carter, N.L., Tsenn, M.C., 1987. Flow properties of continental lithosphere. Tecto-
nophysics 136, 27e63.
Casey, M., Huggenberger, P., 1985. Numerical modelling of finite-amplitude similar
folds developing under general deformation histories. Journal of Structural
Geology 7, 103e114.

Chamberlin, R.T., 1910. The Appalachian folds of central Pennsylvania. Journal of
Geology 18, 228e251.

Chapple, W.M., 1968. A mathematical theory of finite amplitude rock-folding.
Geological Society of America Bulletin 79, 47e68.

Chester, J.C., Spang, J.H., Logan, J.M., 1988. Comparison of thrust fault rock models to
basement-cored folds in the Rocky Mountain foreland. In: Schmidt, C.J.,
Perry Jr., W.J. (Eds.), Interactions of the Rocky Mountains Foreland and the
CordilleranThrust Belt. Geological SocietyofAmericaMemoir, vol.171, pp. 65e74.

Claypole, E.W., 1885. Pennsylvania before and after the elevation of the Appa-
lachian mountains, a study in dynamical geology. The American Naturalist
19, 257e268.

Cloetingh, S., Burov, E., Beekman, F., Andeweg, B., Andriessen, P.A.M., Garcia-
Castellanos, D., de Vicente, G., Vegas, R., 2002. Lithospheric folding in Iberia.
Tectonics 21 (5), 26.

Cobbold, P.R., 1975. Fold propagation in single embedded layers. Tectonophysics 27,
333e351.

Cobbold, P.R., 1976a. Mechanical effects of anisotropy during large finite deforma-
tion. Bulletin de la Société géologique de France 18, 1497e1510.

Cobbold, P.R., 1976b. Fold shapes as functions of progressive strain. Philosophical
Transactions of the Royal Society A 283, 129e138.

Cobbold, P.R., 1977. The finite element analyses of fold propagation e problematic
application. Tectonophysics 38, 339e353.

Cobbold, P.R., Quinquis, H., 1980. Development of sheath folds in shear regimes:
Shear zones in rocks. Journal of Structural Geology 2, 119e126.

Cobbold, P.R., Cosgrove, J.W., Summers, J.M., 1971. Development of internal struc-
tures in deformed anisotropic rocks. Tectonophysics 12, 23e53.

Cook, D.G., 1988. Balancing basement-cored folds of the Rocky Mountains foreland.
In: Schmidt, C.J., Perry Jr., W.J. (Eds.), Interactions of the Rocky Mountains
Foreland and the Cordilleran Thrust Belt. Geological Society of America Memoir,
vol. 171, pp. 53e64.

Cruikshank, K.M., Johnson, A.M., 1993. High amplitude folding of linear-viscous
multilayers. Journal of Structural Geology 15, 79e94.

Currie, J.B., Patnode, H.W., Trump, R.P., 1962. Development of folds in sedimentary
strata. Geological Society of America Bulletin 73, 655e674.

Czeck, D.M., Fissler, D.A., Horsman, E., Tikoff, B., 2009. Strain analysis and rheology
contrasts in polymictic conglomerates: an example from the Seine meta-
conglomerates, Superior Province, Canada. Journal of Structural Geology 31,
1365e1376.

Dahlstrom, C.D., 1969. Balanced cross sections. Canadian Journal of Earth Sciences 6,
743e757.

de Sitter, L.U., 1964. Structural Geology. McGraw Hill, New York.
Dennis, A.J., Secor, D.T., 1987. A model for the development of crenulations in shear

zones with applications from the Southern Appalachian Piedmont. Journal of
Structural Geology 9, 809e817.

Dieterich, J.H., 1969. Origin of cleavage in folded rocks. American Journal of Science
267, 155e165.

Dieterich, J.H., Carter, N.L., 1969. Stress history of folding. American Journal of
Science 267, 129e154.

Escher, A., Watterson, J., 1974. Stretching fabrics, folds and crustal shortening.
Tectonophysics 22, 223e231.

Fletcher, R.C., 1974. Wavelength selection in the folding of a single layer with
power-law rheology. American Journal of Science 274, 1029e1043.

Fletcher, R.C., 1977. Folding of a single viscous layer: exact infinitesimal-amplitude
solution. Tectonophysics 39, 593e606.

Fletcher, R.C., 1979. The shape of single-layer folds at small but finite amplitude.
Tectonophysics 60, 77e87.

Fletcher, R.C., 1991. 3-dimensional folding of an embedded viscous layer in pure
shear. Tectonophysics 13, 87e96.

Fletcher, R.C., 1995. 3-dimensional folding and necking of a power-law layer e are
folds cylindrical, and if so, do we understand why? Tectonophysics 247, 65e83.

Fletcher, R.C., 2005. Instability of an anisotropic power-law fluid in a basic state of
plane flow. Journal of Structural Geology 27, 1155e1167.

Fletcher, R.C., Sherwin, J., 1978. Arc lengths of single layer folds: a discussion of the
comparison between theory and observation. American Journal of Science 278,
1085e1098.

Flinn, D., 1962. On folding during three-dimensional progressive deformation.
Quarterly Journal Geological Society London 118, 385e433.

Flinn, D., 1965. Deformation in metamorphism. In: Pitcher, W.S., Flinn, G.W. (Eds.),
Controls of Metamorphism. Geological Journal Special Issue No 1. Oliver and
Boyd, Edinburgh and London, pp. 48e72.

Frehner, M., Schmalholz, S.M., 2006. Numerical simulations of parasitic folding in
multilayers. Journal of Structural Geology 28, 1647e1657.

Gairola, V.K., Kern, H., 1984. Single-layer folding in marble and limestone: an
experimental study. Tectonophysics 108, 155e172.

Ghosh, S.K., 1966. Experimental tests of buckling folds in relation to strain ellipsoid
in simple shear deformations. Tectonophysics 3, 169e185.

Ghosh, S.K., 1968. Experiments on buckling of multilayers which permit interlayer
gliding. Tectonophysics 6, 207e249.

Ghosh, S.K., 1993. Structural Geology: Fundamentals and Modern Developments.
Pergamon, Oxford.

Ghosh, S.K., Ramberg, H., 1968. Buckling experiments on intersecting fold patterns.
Tectonophysics 5, 89e105.



P.J. Hudleston, S.H. Treagus / Journal of Structural Geology 32 (2010) 2042e2071 2069
Ghosh, S.K., Sengupta, S., 2010. Paradoxical situation in determining relative
competence from wavelength/arclength ratios within buckle folded multi-
layers. Journal of the Geological Society of India 75, 13e17.

Ghosh, S.K., Mandal, N., Khan, D., Deb, S.K., 1992. Modes of superposed buckling in
single layers controlled by initial tightness of early folds. Journal of Structural
Geology 14, 381e394.

Ghosh, S.K., Mandal, N., Sengupta, S., Deb, S.K., Khan, D., 1993. Superposed buckling
in multilayers. Journal of Structural Geology 15, 95e111.

Ghosh, S.K., Khan, D., Sengupta, S., 1995. Interfering folds in constrictional defor-
mation. Journal of Structural Geology 17, 1361e1373.

Grasemann, B., Stüwe, K., 2001. The development of flanking folds during simple shear
and their use as kinematic indicators. Journal of Structural Geology 23, 715e724.

Grasemann, B., Wiesmayr, G., Dragantis, E., Fusseis, F., 2004. Classification of refold
structures. Journal of Geology 112, 119e125.

Gray, D.R., 1981. Cleavageefold relationships and their implications for transected
folds: an example from southwest Virginia, U.S.A. Journal of Structural Geology
3, 265e277.

Grujic, D., 1993. The influence of initial fold geometry on Type 1 and Type 2
interference patterns: an experimental approach. Journal of Structural Geology
15, 293e307.

Grujic, D., Mancktelow, N.S., 1997. Folds with axes parallel to the extension direc-
tion; an experimental study. Journal of Structural Geology 17, 279e291.

Hall, J., 1815. On the vertical position and convolutions of certain strata and their
relation with granite. Transactions Royal Society Edinburgh 7, 79e108.

Hanmer, S., Passchier, C., 1991. Shear-sense indicators; a review. Paper e Geological
Survey of Canada 90-17, 72.

Hansen, E., 1971. Strain Facies. Springer-Verlag. New York.
Harland, W.B., 1971. Tectonic transpression in Caledonian Spitsbergen. Geological

Magazine 108, 27e42.
Hills, E.S., 1963. Elements of Structural Geology. Methuen, London.
Hirth, G., Teyssier, C., Dunlap, W.J., 2001. An evaluation of quartzite flow laws based

on comparisons between experimentally and naturally deformed rocks;
Deformation mechanisms, rheology and microstructures. Geologische Run-
dschau e International Journal of Earth Sciences 90, 77e87.

Hobbs, B., Regenauer-Lieb, K., Ord, A., 2008. Folding with thermal-mechanical
feedback. Journal of Structural Geology 30, 1572e1592.

Hobbs, B., Regenauer-Lieb, K., Ord, A., 2009. Folding with thermal-mechanical
feedback: a reply. Journal of Structural Geology 31, 752e755.

Hobbs, B., Regenauer-Lieb, K., Ord, A., 2010. Folding with thermal-mechanical
feedback: another reply. Journal of Structural Geology 32, 131e134.

Holst, T.B., 1987. Analysis of buckle folds from the early Proterozoic of Minnesota.
American Journal of Science 287, 612e634.

Hudleston, P.J., 1973a. An analysis of “single layer” folds developed experimentally
in viscous media. Tectonophysics 16, 189e214.

Hudleston, P.J., 1973b. An analysis and interpretation of minor folds in the Moine
rocks of Monar, Scotland. Tectonophysics 16, 89e132.

Hudleston, P.J., 1973c. Fold morphology and some geometrical implications of
theories of fold development. Tectonophysics 16, 1e46.

Hudleston, P.J., 1976. Recumbent folds in base of Barnes-Ice-Cap, Baffin Island,
Northwest-Territories, Canada. Geological Society of America Bulletin 87,
1684e1692.

Hudleston, P.J., 1977. Similar folds, recumbent folds, and gravity tectonics in ice and
rocks. Journal of Geology 85, 113e122.

Hudleston, P.J., 1986. Extracting information from folds in rocks. Journal of
Geological Education 34, 237e245.

Hudleston, P.J., 1989. The association of folds and veins in shear zones. Journal of
Structural Geology 11, 949e957.

Hudleston, P.J., Holst, T.B., 1984. Strain analysis and fold shape in a limestone layer
and implications for layer rheology. Tectonophysics 106, 321e347.

Hudleston, P.J., Lan, L., 1993. Information from fold shapes. Journal of Structural
Geology 15, 253e264.

Hudleston, P.J., Lan, L., 1994. Rheological controls on the shapes of single-layer folds.
Journal of Structural Geology 16, 1007e1021.

Hudleston, P.J., Stephansson, O., 1973. Layer shortening and fold shape development
in the buckling of single layers. Tectonophysics 17, 299e321.

Hudleston, P.J., Tabor, J.R., 1988. Strain and fabric development in a buckled calcite
vein and rheological implications. Bulletin of the Geological Institutions of the
University of Uppsala 14, 79e94.

Hudleston, P.J., Treagus, S.H., Lan, L., 1996. Flexural flow folding: does it occur in
nature? Geology 24, 203e206.

Hunt, G.W., Mühlhaus, H.-B., Whiting, A.I.M., 1997. Folding processes and solitary
waves in structural geology. Philosophical Transactions of the Royal Society
London, A 355, 2197e2213.

Hunt, G., Mühlhaus, H., Hobbs, B., Ord, A., 1996. Localized folding of viscoelastic
layers. Geologische Rundshau 85, 58e64.

Hunt, G.W., Edmunds, R., Budd, C.J., Cosgrove, J.W., 2006. Serial parallel folding with
friction; a primitive model using cubic B-splines. Journal of Structural Geology
28, 444e455.

James, A.I., Watkinson, A.J., 1994. Initiation of folding and boudinage in wrench
shear and transpression. Journal of Structural Geology 16, 883e893.

Jeng, F.S., Huang, K.P., 2008. Buckling folds of a single layer embedded in matrix e
theoretical solutions and characteristics. Journal of Structural Geology 30,
633e648.

Jeng, F.S., Lai, Y.C., Teng, M.H., 2002. Influence of strain rate on buckle folding of an
elasto-viscous single layer. Journal of Structural Geology 24, 501e516.
Johns, M.K., Mosher, S., 1996. Physical models of regional fold superposition: the
role of competence contrast. Journal of Structural Geology 18, 475e492.

Johnson, A.M., 1970. Physical Processes in Geology. Freeman, Cooper and Company,
San Francisco.

Johnson, A.M., 1977. Styles of Folding. Elsevier, New York.
Johnson, A.M., Fletcher, R.C., 1994. Folding of Viscous Layers. Columbia University

Press, New York.
Johnson, A.M., Pfaff, V.J., 1989. Parallel, similar and constrained folds. Engineering

Geology 27, 115e180.
Kaus, B.J.P., Schmalholz, S.M., 2006. 3D finite amplitude folding; implications for

stress during crustal and lithospheric deformation. Geophysical Research
Letters 33, L14309.

Kirby, S.H., Kronenberg, A.K., 1987. Rheology of the lithosphere; selected topics.
Reviews of Geophysics 25, 1219e1244.

Kocher, T., Mancktelow, N.S., 2006. Flanking structure development in anisotropic
viscous rock. Journal of Structural Geology 28, 1139e1145.

Kocher, T., Schmalholz, S.M.,Mancktelow,N.S., 2006. Impactofmechanical anisotropy
and power-law rheology on single layer folding. Tectonophysics 421, 71e87.

Kocher, T., Mancktelow, N.S., Schmalholz, S.M., 2008. Numerical modelling of the
effect of matrix anisotropy orientation on single layer fold development. Journal
of Structural Geology 30, 1013e1023.

Kohlstedt, D.L., Evans, B., Mackwell, S.J., 1995. Strength of the lithosphere;
constraints imposed by laboratory experiments. Journal of Geophysical
Research 100, 17,587e17,602.

Lan, L., Hudleston, P.J., 1991. Finite-element models of buckle folds in non-linear
materials. Tectonophysics 199, 1e12.

Lan, L., Hudleston, P.J., 1995a. A method of estimating the stress exponent in the
flow law for rocks using fold shape. Pure and Applied Geophysics 145, 621e635.

Lan, L., Hudleston, P.J., 1995b. The effects of rheology on the strain distribution in
single layer buckle folds. Journal of Structural Geology 17, 727e738.

Lan, L., Hudleston, P., 1996. Rock rheology and sharpness of folds in single layers.
Journal of Structural Geology 18, 925e931.

Latham, J.-P., 1979. Experimentally developed folds in a material with a planar
mineral fabric. Tectonophysics 57, T1eT8.

Latham, J.-P., 1985a. The influence of nonlinear material properties and resistance to
bending on the development of internal structures. Journal of Structural
Geology 7, 225e236.

Latham, J.-P., 1985b. A numerical investigation and geological discussion of the
relationship between folding, kinking and faulting. Journal of Structural
Geology 7, 237e249.

Leith, C.K., 1923. Structural Geology. Henry Holt and Company, Inc., New York.
Lisle, R., 1995. Geological Structures and Maps: a Practical Guide. Butterworth-

Heinemann, Oxford.
Lisle, R., 1997. A fold classification scheme based on a polar plot of inverse layer

thickness. In: Sengupta, S. (Ed.), Evolution of Geological Structures in Micro to
Macro-scales. Chapman & Hall, London, pp. 323e339.

Mancktelow, N.S., 1999. Finite-element modelling of single-layer folding in elasto-
viscous materials; the effect of initial perturbation geometry. Journal of Struc-
tural Geology 21, 161e177.

Mancktelow, N.S., 2001. Single-layer folds developed from initial random perturba-
tions; the effects of probability distribution, fractal dimension, phase, and ampli-
tude. In: Koyi, H.A.,Mancktelow, N.S. (Eds.), TectonicModeling: a Volume inHonor
of Hans Ramberg. Geological Society of America Memoir, vol. 193, pp. 69e87.

Mancktelow, N.S., Abbassi, M.R., 1992. Single layer buckle folding in non-linear
materials; II, Comparison between theory and experiment. Journal of Structural
Geology 14, 105e120.

Mandal, N., Samanta, S.K., Chakraborty, C., 2004. Problem of folding in ductile shear
zones; a theoretical and experimental investigation. Journal of Structural
Geology 26, 475e489.

Manz, R.E., Wickham, J., 1978. Experimental analysis of folding in simple shear.
Tectonophysics 44, 79e90.

McClay, K.R. (Ed.), 1992. Thrust Tectonics. Chapman Hall, London.
Mühlhaus, H.-B., Hobbs, B., Ord, A., 1994. The role of axial constraints on the

evolution of folds in single layers. In: Siriwardane, Zaman (Ed.), Computer
Methods and Advances in Geomechanics. Balkema, Rotterdam, pp. 223e231.

Mühlhaus, H.-B., Sakaguchi, H., Hobbs, B.E., 1998. Evolution of three-dimensional
folds for a non-Newtonian plate in a viscous medium. Proceedings of the Royal
Society London A 454, 3121e3143.

Mühlhaus,H.-B.,Moresi, L.,Hobbs,B.,Dufour, F., 2002. Largeamplitude folding infinely
layeredviscoelastic rock structures. Pure andAppliedGeophysics 159, 2311e2333.

Neurath, C., Smith, R.B., 1982. The effect of material properties on growth rates of
folding and boudinage: experiments with wax models. Journal of Structural
Geology 4, 215e229.

Nevin, C.M., 1931. Principles of Structural Geology. Wiley, New York.
O’Driscoll, E.S., 1962a. Experimental patterns in superimposed similar folding.

Journal of the Alberta Society of Petroleum Geologists 10, 145e167.
O’Driscoll, E.S., 1962b. Models for superposed laminar flow folding. Nature 196,

1146e1148.
Odonne, F., Vialon, P., 1987. Hinge migration as a mechanism of superimposed

folding. Journal of Structural Geology 9, 835e844.
Ormand, C.J., Hudleston, P.J., 2003. Strain paths of three small folds from the Appa-

lachian Valley and Ridge, Maryland. Journal of Structural Geology 25, 1841e1854.
Parrish, D.K., 1973. A nonlinear finite element fold model. American Journal of

Science 273, 318e334.
Passchier, C.W., 2001. Flanking structures. Journal of Structural Geology 23, 951e962.



P.J. Hudleston, S.H. Treagus / Journal of Structural Geology 32 (2010) 2042e20712070
Passchier, C.W., Williams, P.R., 1996. Conflicting shear sense indicators in shear
zones; the problem of non-ideal sections. Journal of Structural Geology 18,
1281e1284.

Paterson, M.S., Weiss, L.E., 1966. Experimental folding and deformation in phyllite.
Geological Society of America Bulletin 77, 343e374.

Platt, J.P., 1983. Progressive refolding in ductile shear zones. Journal of Structural
Geology 5, 619e622.

Price, N.J., Cosgrove, J.W., 1990. Analysis of Geological Structures. Cambridge
University Press, Great Britain.

Ramberg, H., 1959. Evolution of ptygmatic folding. Norsk Geologisk Tiddskrift 39,
99e155.

Ramberg, H., 1960. Relationships between length of arc and thickness of ptyg-
matically folded veins. American Journal of Science 258, 36e46.

Ramberg, H., 1961. Contact strain and folding instability of a multilayered body
under compression. Geologische Rundshau 51, 405e439.

Ramberg, H., 1963. Fluid dynamics of viscous buckling applicable to folding of
layered rocks. Bulletin of the American Association of Petroleum Geologists 47,
484e505.

Ramberg, H., 1964. Selective buckling of composite layers with contrasted rheo-
logical properties, a theory for the simultaneous formation of several orders of
folds. Tectonophysics 1, 307e341.

Ramberg, H., 1970. Folding of laterally compressed multilayers in the field of gravity,
I. Physics of the Earth and Planetary Interior 2, 203e232.

Ramberg, H., 1981. Gravity, Deformation and the Earth’s Crust, Second ed. Academic
Press, London.

Ramberg, I.B., Johnson, A.M., 1976. A theory of concentric, kink and sinusoidal
folding and of monoclinal flexuring of compressible, elastic multilayers; V,
Asymmetric folding in interbedded chert and shale of the Franciscan Complex,
San Francisco Bay area, California. Tectonophysics 32, 295e320.

Ramsay, J.G., 1962a. The geometry and mechanism of formation of “similar” type
folds. Journal of Geology 70, 309e327.

Ramsay, J.G., 1962b. Interference patterns produced by the superposition of folds of
similar type. Journal of Geology 70, 466e481.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw Hill, New York.
Ramsay, J.G., 1974. Development of chevron folds. Geological Society of America

Bulletin 85, 1741e1754.
Ramsay, J.G., Huber, M.I., 1987. The Techniques of Modern Structural Geology. In:

Folds and Fractures, vol. II. Academic Press, London.
Ramsay, J.G., Lisle, R.J., 2000. The Techniques of Modern Structural Geology. In:

Applications of Continuum Mechanics in Structural Geology, vol. 3. Academic
Press, London.

Ramsay, J.G., Casey, M., Kligfield, R., 1983. Role of shear in development of the
Helvetic fold-thrust belt of Switzerland. Geology 11, 439e442.

Roberts, D., Strömgård, K.-E., 1972. A comparison of natural and experimental strain
patterns around fold hinge zones. Tectonophysics 14, 105e120.

Rowan, M.G., Kligfield, R., 1992. Kinematics of large-scale asymmetric buckle folds
in overthrust shear; an example from the Helvetic nappes. In: McClay, K.R. (Ed.),
Thrust Tectonics. Chapman Hall, London, pp. 165e173.

Rutter, E.H., 1993. Experimental rock deformation; techniques, results and appli-
cations to tectonics. Geology Today 9, 61e65.

Sanderson, D.J., Marchini, W.R.D., 1984. Transpression. Journal of Structural Geology
6, 449e458.

Schmalholz, S.M., 2006. Scaled amplification equation: a key to the folding history
of buckled viscous single-layers. Tectonophysics 419, 41e53.

Schmalholz, S.M., Mancktelow, N.S., 2008. Estimation of palaeo-rheology from buckle
fold geometries. Bollettino Della Società Geologica Italiana 127, 227e230.

Schmalholz, S.M., Podladchikov, Y., 1999. Buckling versus folding: importance of
viscoelasticity. Geophysical Research Letters 26, 2641e2644.

Schmalholz, S.M., Podladchikov, Y.Y., 2000. Finite amplitude folding: transition from
exponential to layer length controlled growth. Earth and Planetary Science
Letters 181, 619e633.

Schmalholz, S.M., Podladchikov, Y.Y., 2001. Strain and competence contrast esti-
mation from fold shape. Tectonophysics 340, 195e213.

Schmalholz, S.M., Podladchikov, Y.Y., Schmid, D.D., 2001. A spectral/finite difference
method for simulating large deformations of heterogeneous, viscoelastic
materials. Geophysical Journal International 145, 199e208.

Schmid, D.W., Podladchikov, Y.Y., 2006. Fold amplification rates and dominant
wavelength selection in multilayer stacks. Philosophical Magazine 86,
3409e3423.

Schmid, D.W., Dabrowski, M., Krotkiewski, M., 2008. Evolution of large amplitude
3D fold patterns; a FEM study; Recent advances in computational geodynamics;
theory, numerics and applications. Physics of the Earth and Planetary Interiors
171, 400e408.

Schmid, D.W., Schmalholz, S.M., Mancktelow, N.S., Fletcher, R.C., 2010. Comment on
‘Folding with thermal-mechanical feedback’. Journal of Structural Geology 32,
127e130.

Sengupta, S., Ghosh, S.K., Deb, S.K., Khan, D., 2005. Opening and closing of folds in
superposed deformation. Journal of Structural Geology 27, 1282e1299.

Sherwin, J.-A., Chapple, W.M., 1968. Wavelengths of single layer folds: a comparison
between theory and observation. American Journal of Science 266, 167e179.

Shimamoto, T., Hara, I., 1976. Geometry and strain distribution of single-layer folds.
Tectonophysics 30, 1e34.

Simpson, C., Schmid, S.M., 1983. An evaluation of criteria to deduce the sense of
movement in sheared rocks. Geological Society of America Bulletin 94,
1281e1288.
Skjernaa, L., 1989. Tubular folds and sheath folds; definitions and conceptual
models for their development, with examples from the Grapesvare area,
northern Sweden. Journal of Structural Geology 11, 689e703.

Smith, R.B., 1975. Unified theory of the onset of folding, boudinage, and mullion
structure. Geological Society of America Bulletin 86, 1601e1609.

Smith, R.B., 1977. Formation of folds, boudinage, and mullions in non-Newtonian
materials. Geological Society of America Bulletin 88, 312e320.

Smith, R.B., 1979. The folding of a strongly non-Newtonian layer. American Journal
of Science 279, 272e287.

Soper, N.J., 1986. Geometry of anastomosing solution cleavage in transpression
zones. Journal of Structural Geology 8, 937e940.

Soper, N.J., Hutton, D.H.W., 1984. Late Caledonian sinistral displacements in Britain:
implications for a three-plate collision model. Tectonics 3, 781e794.

Soper, N.J., Webb, B.C., Woodcock, N.H., 1987. Late Caledonian (Acadian) trans-
pression in north-west England: timing, geometry, and geotectonic signifi-
cance. Proceedings of the Yorkshire Geological Society 46, 175e192.

Srivastava, D.C., Lisle, R.J., 2004. Rapid analysis of fold shape using Bezier curves.
Journal of Structural Geology 26, 1553e1559.

Srivastava, D.C., Shah, J., 2006. A rapid method for strain estimation from flattened
parallel folds. Journal of Structural Geology 28, 1e8.

Srivastava, D.C., Shah, J., 2008. The `isogon rosette` method for rapid estimation of
strain in flattened folds. Journal of Structural Geology 30, 444e450.

Stabler, C.L., 1968. Simplified Fourier analysis of fold shapes. Tectonophysics 6,
343e350.

Stringer, P., Treagus, J.E., 1980. Non-axial planar S1 cleavage in the Hawick rocks of
the Galloway area, southern Uplands, Scotland. Journal of Structural Geology 2,
317e331.

Suppe, J., 1983. Geometry and kinematics of fault-bend folding. American Journal of
Science 283, 684e721.

Suppe, J., 1985. Principles of Structural Geology. Prentice Hall, New Jersey.
Talbot, C.J., 1979. Fold trains in a glacier of salt in southern Iran. Journal of Structural

Geology 1, 5e18.
Talbot, C.J., Jackson, M.P.A., 1987. Internal kinematics of salt diapirs. Bulletin of the

American Association of Petroleum Geologists 71, 1068e1093.
Tanner, P.W.G., 1989. The flexural-slip mechanism. Journal of Structural Geology 11,

635e655.
Tentler, T., 2001. Experimental study of single layer folding in nonlinear materials.

In: Koyi, H.A., Mancktelow, N.S. (Eds.), Tectonic Modeling: a Volume in Honor of
Hans Ramberg. Geological Society of America Memoir, vol. 193, pp. 89e99.

Thiessen, R.L., Means, W.D., 1980. Classification of fold interference patterns:
a reexamination. Journal of Structural Geology 2, 311e316.

Treagus, S.H., 1972. Processes in Fold Development. Ph.D. thesis, University of
Manchester, Unpublished.

Treagus, S.H., 1973. Buckling stability of a viscous single-layer system oblique to the
principal compression. Tectonophysics 19, 271e289.

Treagus, S.H., 1982. A new isogon e cleavage classification and its application to
natural and model fold studies. Geological Journal 17, 49e64.

Treagus, S.H., 1983. A new theory of finite strain variation through contrasting layers,
and its bearing on cleavage refraction. Journal of Structural Geology 5, 351e358.

Treagus, S.H., 1988. Strain refraction in layered systems. Journal of Structural
Geology 10, 517e527.

Treagus, S.H., 1993. Flow variations in power-law multilayers: implications for
competence contrasts in rocks. Journal of Structural Geology 15, 423e434.

Treagus, S.H., 1997. Modelling deformation partitioning in folds. In: Sengupta, S.
(Ed.), Evolution of Geological Structures in Micro to Macro-scales. Chapman &
Hall, London, pp. 341e372.

Treagus, S.H., 1999. Are viscosity ratios of rocks measurable from cleavage refrac-
tion? Journal of Structural Geology 20, 895e901.

Treagus, S.H., Fletcher, R.C., 2009. Controls of folding on different scales in multi-
layered rocks. Journal of Structural Geology 31, 1340e1349.

Treagus, S.H., Hudleston, P.J., 2009. Folding with thermal-mechanical feedback:
discussion. Journal of Structural Geology 31, 749e751.

Treagus, J.E., Treagus, S.H., 1981. Folds and the strain ellipsoid; a general model.
Journal of Structural Geology 3, 1e17.

Treagus, S.H., Treagus, J.E., 1992. Transected folds and transpression: how are they
associated? Journal of Structural Geology 14, 361e367.

Treagus, S.H., Treagus, J.E., 2002. Studies of strain and rheology of conglomerates.
Journal of Structural Geology 24, 1541e1567.

Treagus, S.H., Treagus, J.E., Droop, G.T.R., 2003. Superimposed deformations and
their hybrid effects: the Rhoscolyn Anticline unravelled. Journal of the
Geological Society 160, 117e136.

Turcotte, D.L., Schubert, G., 1982. Geodynamics. John Wiley & Sons Inc, New York.
Turner, F.J., Weiss, L.E., 1963. Structural Analysis of Metamorphic Tectonites.

McGraw-Hill, New York.
Twiss, R.J., 1988. Description and classification of folds in single surfaces. Journal of

Structural Geology 10, 607e623.
Van Hise, C.R., 1894. Principles of North American Pre-Cambrian geology. United

States Geological Survey 16th Annual Report, 581e843.
Viola, G., Mancktelow, N.S., 2005. From XY tracking to buckling; axial plane cleavage

fanning and folding during progressive deformation. Journal of Structural
Geology 27, 409e417.

Watkinson, A.J., 1975. Multilayer folds initiated in bulk plane strain, with the axis of
no change perpendicular to the layering. Tectonophysics 28, T7eT11.

Watkinson, A.J., 1981. Patterns of fold interference: influence of early fold shapes.
Journal of Structural Geology 3, 19e23.



P.J. Hudleston, S.H. Treagus / Journal of Structural Geology 32 (2010) 2042e2071 2071
Watkinson, A.J., Cobbold, P.R., 1981. Axial directions of folds in rocks with linear/
planar fabrics. Journal of Structural Geology 3, 211e217.

Weiss, L.E., 1972. The Minor Structures of Deformed Rocks. Springer, New York.
Wilkerson, M.S., Fischer, M.P., Apotria, T., 2002. Fault-related folds: the transition

from 2-D to 3-D. Special issue. Journal of Structural Geology 24 (4).
Williams, P.F., 1979. The development of folds in a cross-laminated siltstone. Journal

of Structural Geology 1, 19e30.
Williams, P.F., Price, G.P., 1990. Origin of kinkbands and shear-band cleavage in

shear zones; an experimental study. Journal of Structural Geology 12, 145e164.
Willis, B., 1891. Mechanics of the Appalachian structure. United States Geological

Survey 13th Annual Report, 212e281.
Woodcock, N.H., 1976. Structural style in slump sheets; Ludlow series, Powys,
Wales. Journal of the Geological Society of London 132, 399e415.

Woodcock, N.H., Awan, M.A., Johnson, T.E., Mackie, A.H., Smith, R.D., 1988. Acadian
tectonics in Wales during Avalonia/Laurentia convergence. Tectonics 7,
483e495.

Zhang, Y., Hobbs, B.E., Ord, A.M., Mühlhaus, H.B., 1996. Computer simulation of
single layer buckling. Journal of Structural Geology 18, 643e655.

Zhang, Y., Mancktelow, N.S., Hobbs, B.E., Ord, A.M., Mühlhaus, H.B., 2000. Numerical
modelling of single-layer folding: clarification of an issue regarding the possible
effect of computer codes and the influence of initial irregularities. Journal of
Structural Geology 22, 1511e1522.


	Information from folds: A review
	Introduction
	Theoretical considerations and modeling
	Single-layer fold theory
	Finite amplitude single-layer fold theory
	Single-layer fold modeling: analog and numerical
	Multilayer folding: theory and modeling
	Oblique-layer folding, non-plane strain and non-coaxial deformation
	Folding of oblique layers in general three dimensional strain fields

	Information from wavelength/thickness ratios of single-layer folds
	Wavelength selection
	Field data and inferences

	Information from fold shapes
	Single layers
	Multilayers

	Strain measurement from folds
	Elementary buckle shortening
	Shortening according to fold shape
	Shortening in analog and numerical models
	Strain contour map of Schmalholz and Podladchikov
	Scaled stretch and amplification, and stages of folding

	Information on strain and deformation history from folded rocks
	Inferring fold mechanisms from strains and fabric (fanning and refraction of cleavage)
	Information from asymmetry of folds on different scales
	Folds in shear zones
	Three-dimensional features of folds: localization, transected folds, and refolded folds

	Future work
	Acknowledgments
	Symbols used
	References


